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Often the pipe velocities in throttling are so low that the K_.E. terms are also negligible. So
h,=h, (5.16)
or the enthalpy of the fluid before throttling is equal to the enthalpy of the fluid after throttling.

5.4.3 Turbine and Compressor

Turbines and engines give positive power output, whereas compressors and pumps require power input.

For a turbine (Fig. 5.6) which is well insulated, the flow veloc-
ities are often small, and the K.E. terms can be neglected. The
S.FE.E. then becomes

W o P =h,-hy
dm m

It is seen that work is done by the fluid at the expense of its
enthalpy.

Similarly, for an adiabatic pump or compressor, work is done
upon the fluid and W is negative. So the S.F.E.E. becomes

hy=hy+

ho=h- " or P —h-n, _
m . m : Flow through a turbine

The enthalpy of the fluid increases by the amount of work input.

5.4.4 Heat Exchanger

A heat exchanger is a device in which heat is transferred from one fluid to another. Figure 5.7 shows a steam
condenser, where steam condensers outside the tubes and cooling water flows through the tubes. The S.FE.E.
for the C.S. gives
w h +w hy=w hy+ W, h, or w,(h,—h)= w(hy—h,)
Here the K.E. and PE. terms are considered small, there is no external work done, and energy exchange
in the form of heat is confined only between the two fluids, i.e., there is no external heat interaction or heat
loss.
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Figure 5.8 shows a steam desuperheater where the High temperature steam
temperature of the superheated steam is reduced by Wo |
' D @ @
spraying water. If w,, w,, and w; are the mass flow Water wy = |t ] -z,
rates of the injected water, of the steam entering, I L/_ CS.
and of the steam leaving, respectively, and hy, h,, ® : 1wl ®
and A, are the corresponding enthalpies, and if K.E. ] ] 'h\\ I Y w Low
and PE. terms are neglected as before, the S.FE.E. |' : r" | — " temperature
becomes ! 1@ steam
wih, + wyh, = wh, : U :
and the mass balance gives : .'
| TN —|

w+wy=w, .=

& & Steam desuperheater

5.5 ‘ COMPARISON OF S.EE.E. WITH EULER AND BERNOULLI EQUATIONS
The steady flow energy Eq. (5.8) can be written as

& V2 _ 2 dw,
G O+ VoV gz g4 O

In the differential form the S.FE.E. becomes
40 =dh+ VdV +gdZ + dw, (5.17)
where &Q and & W, refer to unit mass of the substance. Since # = u + pvand &0 = du + pdv (for a
quasi-static path involving only pdv-work), Eq. (5.17) can be written as
du + pdV =du + pdV + Vdp + VAV + gdZ + d W,
For an inviscid frictionless fluid flowing through a pipe
Vdp + VAV - gdZ = 0 (5.18)

This is the Euler equation. If we integrate between two sections 1 and 2 of the pipe
2

fvdp+ 2Vdv+ ]"gd2=o
1 1 1

For an incompressible fluid, v = constant
2 2

v(p,-p,) + YZZ——VT' +g(Z,-2)=0 (5.19)
Since the specific volume v is the reciprocal of the density p, we have
ﬂ+V_lz +zlg=&+YA2 +Zg (5.20)
p 2 p 2
or £+Y2—2 + Zg = constant (5.21)

This is known as the Bernoulli equation, which is valid for an inviscid incompressible fluid. It can also be
expressed in the following form

A

V2
PVt gZ] =0 (5.22)

where v is constant and A (...) means ‘increase in ...
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The S.EE.E. as given by Eq. (5.18) or Eq. (5.17) can be written with (u + pv) substituted for A, as follows:

2

Q—Wx=Au+pv+VT+gZ (5.23)

A comparison of Egs (5.22) and (5.23) shows that they have several terms in common. However, while
the Bernoulli equation is restricted to frictionless incompressible fluids, the S.FE.E. is not, and is valid for
viscous compressible fluids as well. The Bernoulli equation is, therefore, a special limiting case of the more
general steady flow energy equation.

5.6 ‘ VARIABLE FLOW PROCESSES

Many flow processes, such as filling up and evacu- C.S.
ating gas cylinders, are not steady. Such processes /_

can be analyzed by the control volume technique. = _>q---—--—-—-- ——— @
Consider a device through which a fluid is flowing
under non-steady state conditions (Fig. 5.9). The rate

at which the mass of fluid within the control volume Ccv. !
is accumulated is equal to the net rate of mass flow ™ @
across the control surface, as given below } dd___wx
________________ =
dmy :wl_w2:_dﬁ_d_'"_£ (5.24)
dr dr dr Variable flow process

where m,, is the mass of fluid within the control
volume at any instant.
Over any finite period of time
Am, = Am, — Am, : (5.25)
The rate of accumulation of encrgy within the control volume is equal to the net rate of energy flow across
the control surface. If E is the energy of fluid within the control volume at any instant.
Rate of energy increase = Rate of energy inflow — Rate of energy outflow

dE, \ a9
= =w |+ +Zg|+
il L ™
v, aw,
-w, |h, + -2+ Z,8] - x (5.26)
2 dr
2
Now E,=|U+2 "+ mgz
: v
where m is the mass of fluid in the control volume at any instant.
de, _d my’? \'A dm, &Q
¥ = —|U+ +mgZ| =|h+-1+Zg|——+ —
ar  dr ® JV Wt A T e
\A dm, d&W,
N PR/ I [ LS (5:27)
Ty T Ta
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Energy fluxes in an unsteady system

Figure 5.10 shows all these energy flux quantities. For ;any finite time interval, Eq. (5.27) becomes

AE, QW+f

~J |
Equation (5.26) is the general energy equation. For steady flow,
dE, _
- =
and the equation reduces to Eq. (5.7). For a closed system w, = 0, w, = 0, then from Eq. (5.26),
dEy _ 40 W, o 4E,=dQ-dW, o, dQ=dE+ W,
dr dr dr

as obtained earlier.

Z

+-—-—-—+Zlg dm,

+—+Zzg dm, (5.28)

]

5.7 ‘ EXAMPLE OF A VARIABLE FLOW PROBLEM

Variable flow processes may be analyzed either by the system technique or the control volume technique, as
illustrated below.

Consider a process in which a gas bottle is filled from a pipeline (Fig. 5.11). In the beginning the bottle
contains gas of mass m, at state p,, ¢, v|, b, and u,. The valve is opened and gas flows into the bottle till the
mass of gas in the bottle is m, at state p,, t,, v,, h, and u,. The supply to the pipeline is very large so that the
- state of gas in the pipeline is constant at Pyt Uy hp, u, and Vp.

System Technique Assume an envelope (which is extensible) of gas in the pipeline and the tube which
would eventually enter the bottle, as shown in Fig. 5.11.
Energy of the gas before filling

E=mu +@m,-m)|—+u

P

where (m, — m,) is the mass of gas in the pipeline and tube which would enter the bottle.
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/— Envelope of system boundary

)
D

Energy of the gas after filling
E,=myu,

AE = E,— E, = myu, — |mu, +(m, —m,) Tp’*’“p

(5.29)

The PE. terms are neglected: The gas in the bottle is not in motion, and so the K.E. terms have been

omitted.

Now, there is a change in the volume of gas because of the collapse of the envelope to zero volume. Then
the work done

W=p(V,=V)=p0—-(m,—m)y]=—(m,—m)py,
.. Using the first law for the process

O=AE+W
V2
= myu, —mu, —(m,—m))

—2"- +u, | —(my—m)p,y,

V2
= myu, —mu, —(m,—m,) Tp + h,
\

(5.30)

which gives the energy balance for the process.

Control Volume Technique Assume a control volume bounded by a control surface, as shown in Fig. 5.11.
Applying the energy Eq. (5.27) to this case, the following energy balance may be written on a time rate basis
dEy _ 49 |
dr dr

2
h+V_p@

P 2 |dr

Since hp and V, are constant, the equation is integrated to give for the total process

2

VP
AEy=Q+ |+

(m,—m,)

Now AEV= U,-U,=myu,-mu,

2

Q = myu, —mu, — | h, +7p] (my—m,)
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This equation is the same as Eq. (5.30).
If m, = 0, i.e., the bottle is initially evacuated,
2

14
Again, if Q = 0 and hp>>%, Q=mu, —m,

V2
hp +—2p—] 0=myu, — mzhp

or u,=h,=u,+p,v,
Thus, flow work ( ppvp) is converted to an increase in molecular internal energy (uz—up).
If the gas is assumed ideal,
¢, T,= cpr or T,=v Tp
If Tp =27 + 273 = 300 K, then for air
T,=14x300=420K or t,=147°C
Therefore, in adiabatically filling a bottle with air at 27°C, the gas temperature rises to 147°C due to the
flow work being converted to internal energy increase.

5.8 ‘ DISCHARGING AND CHARGING A TANK

Let us consider a tank discharging a fluid into a supply line (Fig. 5.12). Since & W, = 0 and dm,, = 0, applying

first law to the control volume, )

h+V7+gz] dm,, (5:31)

out

dU, = 80+

Assuming K E. and PE. of the fluid to be small and dQ =0
d(mu) = hdm
mdu + udm = udm + pvdm

dm _ du (5.32)
m pv
Again V = vm = const.
vdm + mdv=10
dm dv Si ly li
or 2= (5.33) upply line
= VAR
From Eqs (5.32) and 5.33), N
du__&
pv v

Valve
du+pr)=0 or &0=0
which shows that the process is adiabatic and quasi-static.
For charging the tank

f(hdm)in = AU, = myu, —mu, (5.34) ! Im=—====== :
mh, = mau, —myu, ! C.V. !
where the subscript p refers to the constant state of the |l |

fluid in the pipeline. If the tank is initially empty, m, = 0.
mphp = myu, m Charging and discharging a tank
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Since
m,=m,
hp =u,
Enthalpy is converted to internal energy.
If the fluid is an ideal gas, the temperature of the gas in the tank after it is charged is given by
¢, I, = c,T,

or T,= 'yTp (5.35)

Example 5.1

Air flows steadily at the rate of 0.5 kg/s through an air compressor, entering at T m/s velocity, 100 kPa pres-
sure, and 0.95 m’/kg volume, and leaving at 5 m/s, 700 kPa, and 0.19 m*/kg. The internal energy of the air
leaving is 90 kJ/kg greater than that of the air entering. Cooling water in the compressor Jjackets absorbs
heat from the air at the rate of 58 kW. (a) Compute the rate of shaft work input to the air in kW, (b) Find the
ratio of the inlet pipe diameter to outlet pipe diameter.

Solution Figure Ex. 5.1 shows the details of the problem.

] 7 Vz= 5m/s
| Wi T 13— p,= 700 kPa
V,=7mis D Air Compressor || @ vp=0.19 m3/kg
|
py = 100 kPa —&=] ‘E \ Uy = (g + 90) ki/kg

= 0.95 m%k =% - -
! e o \—cCs. Q=-58kW

(a) Writing the steady flow energy equation, we have

A\ \'A g
wlw + pyy + =+ Zg| + g0 _, u, + pyv, + =+ 2,8 |+ il
2 dr 2 dr
aw, V2 -v? Iy
2 =—w (4, —u)+ (P, - py)+ 22—+ +(z,-27)g| + a9
dr 2 dr
W, —_oske 90£+(7x0.l9——1x0.95)100—kl
dr s kg kg
2 2 -3
L X107 KL o sgw
2 kg
=-0.5[90 + 38 —0.012] kJ/s — 58 kW
=-122kW Ans. (a)

Rate of work input is 122 kW.
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(b) From mass balance, we have
W= 4V — 4V,
Y v,

4 _n YV, 095
4, v, V, 019

J3.57 = 1.89

3 =357
7

4
d2

Example 5.2

Ans. (b)

the specific internal energy increase or decrease, and by how much?

Solution Writing the steady flow energy equation for the control volume, as shown in Fig. Ex. 5.2.

® = »—— CS.
I
ks + —— W=135kJ

vy = 0.37 m3kg : |

py = 600 kPa | C.V. ! 5 v, = 0.62 m¥kg
V, =16 m/s : }_ngb_‘ 52:100kPa
Z,=32m ) — V, = 270 m/s

A ! 2%=0
Q=-9.0kJ

V2 aQ \'A aw,
uy+pv+ L +Zg+ —= =u,+pur,+ L +Zg+ 2
1 TP : 18 i 2T T 124 ]

Vi V2 aw, a9
U —u,=(pv,—py)+ 21 +(Z,-Z)g+ —*x - =%
1 2 272 1”1 2 2 1 ] i
270° —16%)x 107
:(1><0.62—6><O.37)><102+( )

2
+ (=32 x 9.81 x 10%) + 135 — (~ 9.0)

=-160 + 36.45-0.314 + 135 + 9 = 20.136 kl/kg
Specific internal energy decreases by 20.136 kJ.

Example 5.3

In a steady flow apparatus, 135 kJ of work is done by each kg of fluid. The specific volume of the fluid,
pressure, and velocity at the inlet are 0.37 m*/kg, 600 kPa, and 16 m/s. The inlet is 32 m above the floor,
and the discharge pipe is at floor level. The discharge conditions are 0.62 m*/kg, 100 kPa, and 270 m/s. The
total heat loss between the inlet and discharge is 9 kJ/kg of fluid. In flowing through this apparatus, does

In a steam power station, steam flows steadily through a 0.2 m diameter pipeline from the boiler to the turbine.
At the boiler end, the steam conditions are found to be: p = 4 MPa, t = 400°C, h = 3213.6 kJ/kg, and
v = 0.073 m’/kg. At the turbine end, the conditions are found to be: p = 3.5 MPa, t =392°C, h = 3202.6 kJ/kg,
and v = 0.084 m*/kg. There is a heat loss of 8.5 kJ/kg from the pipeline. Calculate the steam flow rate.
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Solution Writing the steady flow energy equation for the control volume as shown in Fig. Ex. 5.3

Boiler Turbine
. V. .

2 2
ho+ Y +Zg+ 9O _p+Y2 428+ aw,
2 dm 2

Here, there is no change in datum, so change in potential energy will be zero.

Now 4V, _ 4V,
4! vy
v,= ANty 008y sy,
v, 4 v 0.073
and aw, =0
dm
2 2
he Y+ 92 gy Ve
2 dm 2
2 2 -3
LV evE)x107 g 99 3513632026 + (- 8.5) =25 Klke
> dm
V(1152 -1) =5 x 10°
V2 = 15,650 m?¥/s?
Vv, =125.1m/s
s 2 2
v,  Tx(o. .
Mass flow rate w= AVi _ 4x(02) m” x125.1m/s
1 0.073m’/kg
= 53.8 kg/s

Example 5.4

<3

Ans.

A certain water heater operates under steady flow conditions receiving 4.2 kg/s of water at 75°C temp-
erature, enthalpy 313.93 kJ/kg. The water is heated by mixing with steam which is supplied to the heater at
temperature 100.2°C and enthalpy 2676 kJ/kg. The mixture leaves the heater as liquid water at temperature

100°C and enthalpy 419 kJ/kg. How much steam must be supplied to the heater per hour?
Solution By mass balance across the control surface (Fig. Ex. 5.4)

w1+w2=w3
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By energy balance | w,
2 Water
wi b+ zg|y 42
2 dr " .
)=k -b——
\'A [ |
+w, | +-2+2Z | !
2ty e w— G T . —cs.
Steam Water heater :
\ aw, 2)! .
=w, hg+73~+23g + - . I_—__—————_}

oo

By the nature of the process, there is no shaft
work. Potential and kinetic energy terms are as-
sumed to balance zero. The heater is assumed to Mixture
be insulated. So the steady flow enerzy equation B 5
reduces to

wh, +wh, = wh,
4.2 x 313.93 +w, x 2676 = (4.2 + w,) 419
w, = 0.196 kg/s
= 705 kg/h Ans.

Example 5.5

Air at a temperature of 15°C passes through a heat exchanger at a velocity of 30 m/s where its temperature
is raised to 800°C. It then enters a turbine with the same velocity of 30 m/s and expands until the temp-
erature falls to 650°C. On leaving the turbine, the air is taken at a velocity of 60 m/s to a nozzle where it
expands until the temperature has fallen to 500°C. If the air flow rate is 2 kg/s, calculate (a) the rate of heat
transfer to the air in the heat exchanger, (b) the power output from the turbine assuming no heat loss, and
(¢) the velocity at exit from the nozzle, assuming no heat loss. Take the enthalpy of air as h = b where
C,is the specific heat equal to 1.005 kJ/kg K and t is the temperature.

Solution  As shown in Fig. Ex. 5.5, writing the S.F.E.E. for the heat exchanger and eliminating the terms not
relevant,

Heat exchanger

? ?
é@oé Wy

t, = 15°C, t, = 800°C
V;=30°m/s, V=30m/s ® @
;= 650°C, V, =60 m/s
t,=500°C, V, = ?
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2

Vl2 V;
w h1+_2“+Zlg +0,,=w h2+-2—+Zzg

+ W,

wh, + Q, , = wh,

0., =wlhy—h) = we,(t,—t,) =2 x 1.005 (800 - 15) = 2.01 x 785
= 1580 kJ/s Ans. (a)
Energy equation for the turbine gives

2 2
w VTz<i—l¢2 ==wh3+wVs + W,

72 2
Vo Vs by -k = Woiw
2

(30% — 60%)x 1073

+ 1.005 (800 — 650) = W, /w

2
Wi 135415075 = 149.4 kikg
w
W, =149.4 x 2KkJ/s
=298.8 kW Ans. (b)

Writing the energy equation for the nozzle
V_33 +hy = Y_‘i + h,
2 2
Vi-Vi o ¢, ;1)
Vi—Vg = 1.005 (650 — 500) x 2 x 10°> = 301.50 x 10> m?/s?

Vi =30.15 x 10* 4+ 0.36 x 10* = 30.51 x 10* m%s?
Velocity at exit from the nozzle

V, =554 m/s Ans. (c)

Example 5.6

The air speed of a turbojet engine in flight is 270 m/s. Ambient air temperature is — 15°C. Gas temp-
erature at outlet of nozzle is 600°C. Corresponding enthalpy values for air and gas are respectively 260 and
912 kJ/kg. Fuel-air ratio is 0.0190. Chemical energy of the fuel is 44.5 MJ/kg. Owing to incomplete com-

bustion, 5% of the chemical energy is not released in the reaction. Heat loss from the engine is 21 kJ/kg of
air. Calculate the velocity of the exhaust jet.

Solution Energy equation for the turbojet engine (Fig. Ex. 5.6.) gives

2

\Y 2
Rty

A/
w, +wE+Q=w, h8+-—2§—+E

g

260 +

2 -3
319-;‘—19— +0.0190 x 44500 — 21
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Fuel

C.S
Ao s
St
| We
/I Exhaust

2 -3

Vix10
912 + & 5 +0050019

= 1.0190 5 x 44500]

260 + 36.5 + 845-21 = 1.019

V2 x1073
912+ 52—+ 42
2
2

—£ =156 x 103 m¥s?

vV, = Vv3.12 x 100 m/s
Velocity of exhaust gas, V, =560 m/s

Ans.
| Example 5.7

In a reciprocating engine, the mass of gas occupying the clearance volume is m kg atstatep,, u,, v, and h,. By

opening the inlet valve, m_kg of gas is taken into the cylinder;, and at the concluston of the intake process the
state of the gas is given by p,, u,, v,, h,. The state of the gas in the supply pipe is constant and is given by Py ity
h o V How much heat is transferred between the gas and the cylinder walls during the intake pmcess7

Solution Let us consider the control volume as shown in Fig. Ex. 5.7. Writing the energy balance on a time
rate basis

Gas inlet
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With hP and v, being constant, the above equation can be integrated to give for the total process

V2
AE,=Q-W+ |h +—L2| m
v Q hp 2 f
Now AE, =U,~U =(m,+m)u,-mu,
V2
Q= (m,+ mu,—mu, —m |k, +Tp +Ww Ans.
Example 5.8
The internal energy of air is given by
u=u,+07181¢

where u is in kJ/kg, u, is any arbitrary value of u at 0°C, kJ/kg, and t is the temperature in °C. Also for air;
p, = 0.287 (t + 273), where p is in kPa and v is in m*/kg.

A mass of air is stirred by a paddle wheel in an insulated constant volume. tank. The veloci-
ties due to stirring make a negligible contribution to the internal energy of the air. Air flows out
through a small valve in the tank at a rate controlled to keep the temperature in the tank constant.
At a certain instant the conditions are as follows: tank volume 0.12 m3, pressure 1 MPa, temperature
150°C, and power to paddle wheel 0.1 kW. Find the rate of flow of air out of the tank at this instant.

Solution Writing the energy balance for the control volume as shown in Fig. Ex, 5.8
dE, _ aw dm
- (hp )

dr dr E
Since there is no change in internal energy of air in the tank,
,.dm _ aw W=0.1kW
Pdr dr

where hp =u+ pv. [m— e —— = |
Letu=0att=0K =—273°C I I [ !

u=u0+0.718t : Tank :

0=u,+0.718 (- 273) ! Jl

|
=0.718 x 273 kJ/k N v W -
Acrc ) >< g *ﬁﬁm \os

u=0.718 x 273 + 0.718 ¢
=0.718 (t + 273) k/kg L

h,=0.718 (t + 273) + 0.287 (1 + 273)

or hp = 1.005 (¢t + 273)
At 150°C
h, = 1.005 x 423 = 425 ki/kg
dm _ 1 aW
ar h, dr
0.1kJ/s
= m = 0.236 x 1073 kg/s = 0.845 kg/h

This is the rate at which air flows out of the tank.
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Example 5.9

A well-insulated vessel of volume V contains a gas at pressure p, and temperature t,. The gas from a main
at a uniform temperature t, is pumped into the vessel and the inflow rate decreases exponentzally with time
accordingto m = mo e“" where a is a constant. Determine the pressure and temperature of the gas in the
vessel as a function of time. Neglect the K.E. of the gas entering the vessel and assume that the gas follows

the relation pv=RT, whereT=1t+ 273
and its specific heats are constant.

(i) Ifthe vessel was initially evacuated, show that the temperature inside the vessel is independent of time.

(iiy Determine the charging time when the pressure inside the vessel reaches that of the main.

Solution  Since the vessel is well-insulated, Q = 0 and there is no external work transfer, W = C. Therefore,

By _p, I b e

dr dr
where h, is the enthalpy of the gas in the main.

On integration, .
E=E,+ MM (1 _ e
a

where E, is the initial energy of the vessel at the beginning of the charging process, i.e. E = E at
7 = 0. Neglecting K.E. and PE. changes, by energy balance

Mu = My, + 7 (1-e*) (u, +p,v) (1)
a

Again,

—_— = ';loe—aT

dr
On integration, .

me (1 — e‘”)
M=M,+ ——* 2)
a

where M, is the initial mass of the gas. Eliminating M from Eqs (1) and (2),

M, + ﬂa—(l —e )t u— My,

=22 (1-e*) (u, +RT))
a
mo
Me(T-T)= " (1-a*) {c,(T,~ T) +RT,}

M, c,T, + ”‘7(1 —e™ e, T,

M, + ~;’;—0(1 — e_“) c,
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My, T, + %(1 —e™ )cpTl

R
(1-e®)T,

The above two equations show the temperature and pressure of the gas in the vessel as functions

of time.

() IfM,=0,T=1T,, i.e. the temperature inside the vessel becomes independent of time and
is equal to 77, throughout the charging process.

(ii)) The charging process will stop when pressure inside the vessel reaches that of the main. The
charging time can be found by setting p = p, in the pressure relation
mo RYT, moR _,.
—pp=————¢€ T,
Py= Py oV g1
By rearrangement,
I;lo R’YTI / (a V)
e =
mRYL) (-
[ av ] (P = po)
1 av
T=— —In{l-
p (P - po) mg RAT, ~

Explain the system approach and the control
volume approach in the analysis of a flow process.
What is a steady flow process? What is steady state?

Write the steady flow energy equation for a single
stream entering and a single stream leaving a con-
trol volume and explain the various terms in it.

Give the differential form of the S.FE.E.

Under what conditions does the S.FE.E. reduce
to Euler’s equation?

How does Bernoulli’s equation compare with
S.FEE.?

kg-K. Ans. 28.38°C

A blower handles 1 kg/s of air at 20°C and con-
sumes a power of 15 kW. The inlet and outlet
velocities of air are 100 m/s and 150 m/s respec-
tively. Find the exit air temperature, assuming
adiabatic conditions. Take < of air as 1.005 kJ/

57

58

59

5.10

5.11

e

What will be the velocity of a fluid leaving a
nozzle, if the velocity of approach is very small?

Show that the enthalpy of a fluid before throttling
is equal to that after throttling.

Write the general energy equation for a variable
flow process.

What is the system technique in a bottle-filling
process?

Explain the control volume technique in a vari-
able flow process.

A turbine operates under steady flow conditions,
receiving steam at the following state: pressure
1.2 MPa, temperature 188°C, enthalpy 2785 kJ/kg,
velocity 33.3 m/s and elevation 3 m. The steam
leaves the turbine at the following state: pressure
20 kPa, enthalpy 2512 kJ/kg, velocity 100 m/s,
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and elevation 0 m. Heat is lost to the surroundings
at the rate of 0.29 kJ/s. If the rate of steam flow
through the turbine is 0.42 kg/s, what is the power
output of the turbine in kW?  Ans. 112.51 kW

A nozzle is a device for increasing the veloc-
ity of a steadily flowing stream. At the inlet to a
certain nozzle, the enthalpy of the fluid passing
is 3000 kJ/kg and the velocity is 60 m/s. At the
discharge end, the enthalpy is 2762 kJ/kg. The
nozzle is horizontal and there is negligible heat
loss from it. (a) Find the velocity at exist from
the nozzle. (b) If the inlet area is 0.1 m? and the
specific volume at inlet is 0.187 m*/Xkg, find the
mass flow rate. (c) If the specific volume at the
nozzle exit is 0.498 m’/kg, find the exit area of
the nozzle.

Ans. (a) 692.5 m/s, (b) 32.08 kg/s (c) 0.023 m?

In an oil cooler, oil flows steadily through a
bundle of metal tubes submerged in a steady
stream of cooling water. Under steady flow con-
ditions, the oil enters at 90°C and leaves at 30°C,
while the water enters at 25°C and leaves at 70°C.
The enthalpy of oil at t°C is given by

h=1.681+10.5 x 10~ 2 ki/kg

What is the cooling water flow required for cooling
2.78kg/s of 0il? Ans. 1.473kg/s

A thermoelectric generator consists of a series of
semiconductor elements (Fig. P. 5.5), heated on
one side and cooled on the other. Electric current
flow is produced as a result of energy transfer
as heat. In a particular experiment the current

5.6

5.7

5.8

was measured to be 0.5 amp and the electro-
static potential at (1) was 0.8 volt above that at
(2). Energy transfer as heat to the hot side of the
generator was taking place at a rate of 5.5 watts.
Determine the rate of energy transfer as heat from
the cold side and the energy conversion efficiency.

Ans. Q, = 5.1 watts, n = 0.073

A turbocompressor delivers 2.33 m%/s of air at
0.276 MPa, 43°C which is heated at this pressure
to 430°C and finally expanded in a turbine which
delivers 1860 kW. During the expansion, there
is a heat transfer of 0.09 MJ/s to the surround-
ings. Calculate the turbine exhaust temperature if
changes in kinetic and potential energy are negli-
gible. Take ¢, = 1.005 kJ/kgK Ans. 157°C

A reciprocating air compressor takes in 2 m*/min
at 0.11 MPa, 20°C which it delivers at 1.5 MPa,
111°C to an aftercooler where the air is cooled at
constant pressure to 25°C. The power absorbed
by the compressor is 4.15 kW. Determine the heat
transfer in (a) the compressor, and (b) the cooler.
State your assumptions.

Ans. —0.17 kJ/s, — 3.76 kJ/s.

In a water cooling tower air enters at a height
of 1 m above the ground level and leaves at a
height of 7 m. The inlet and outlet velocities are
20 m/s and 30 m/s respectively. Water enters at a
height of 8 m and leaves at a height of 0.8 m. The
velocity of water at entry and exit are 3 m/s and
1 m/s respectively. Water temperatures are 80°C
and 50°C at the entry and exit respectively. Air

ARG ...
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temperatures are 30°C and 70°C at the entry and
exitrespectively. The cooling tower is well insulated
and a fan of 2.25 kW drives the air through the
cooler. Find the amount of air per second required
for 1 kg/s of water flow. The values of ¢ of air and
water are 1.005 and 4.187 kJ/kg K respectively.

Ans.3.16kg

Air at 101.325 kPa, 20°C is taken into a gas tur-
bine power plant at a velocity of 140 m/s through
an opening of 0.15 m? cross-sectional area. The air
is compressed heated, expanded through a turbine,
and exhausted at 0.18 MPa, 150°C through an
opening of 0.10 m? cross-sectional area. The power
output is 375 kW. Calculate the net amount of heat
added to the air in kJ/kg. Assume that air obeys the
law pv = 0.287 (¢ + 273), where p is the pressure
in kPa, v is the specific volume inm*/kg, and tis the
temperature in °C. Take c, = 1.005 ki/kg K.

Ans. 150.23 kJ/kg

A gas flows steadily through a rotary compressor.
The gas enters the compressor at a temperature
of 16°C, a pressure of 100 kPa, and an enthalpy
of 391.2 kJ/kg. The gas leaves the compressor at
a temperature of 245°C, a pressure of 0.6 MPa,
and an enthalpy of 534.5 kJ/kg. There is no heat
transfer to or from the gas as it flows through the
compressor. (a) Evaluate the external work done
per unit mass of gas assuming the gas velocities
at entry and exit to be negligible. (b) Evaluate the
external work done per unit mass of gas when the
gas velocity at entry is 80 m/s and that at exit is
160 m/s. Ans. 143.3 kJ/kg, 152.9 kJ/kg

The steam supply to an engine comprises two
streams which mix before entering the engine.
One stream is supplied at the rate of 0.01 kg/s
with an enthalpy of 2952 kJ/kg and a velocity of
20 m/s. The other stream is supplied at the rate
of 0.1 kg/s with an enthalpy of 2569 kJ/kg and a
velocity of 120 m/s. At the exit from the engine
the fluid leaves as two streams, one of water at the
rate of 0.001 kg/s with an enthalpy of 420 kJ/kg
and the other of steam; the fluid velocities at the
exit are negligible. The engine develops a shaft
power of 25 kW. The heat transfer is negligible.
Evaluate the enthalpy of the second exit stream.

Ans. 2402 kJ/kg

The stream of air and gasoline vapour, in the
ratio of 14:1 by mass, enters a gasoline engine at

5.13

5.14

5.15
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a temperature of 30°C and leaves as combustion
products at a temperature of 790°C. The engine
has a specific fuel consumption of 0.3 kg/kWh.
The net heat transfer rate from the fuel-air stream
to the jacket cooling water and to the surround-
ings is 35 kW. The shaft power delivered by the
engine is 26 kW. Compute the increase in the spe-
cific enthalpy of the fuel-air stream, assuming the
changes in kinetic energy and in elevation to be
negligible. Ans. — 1877 kJ/kg mixture
An air turbine forms part of an aircraft refrigerating
plant. Air at a pressure of 295 kPa and a tempera-
ture of 58°C flows steadily into the turbine with a
velocity of 45 m/s. The air leaves the turbine at a
pressure of 115 kPa, a temperature of 2°C, and a
velocity of 150 m/s. The shaft work delivered by
the turbine is 54 kJ/kg of air. Neglecting changes in
elevation, determine the magnitude and sign of the
heat transfer per unit mass of air flowing. For air,
take 6= 1.005 kJ/kg K and the enthalpy h = c_ ¢.

Ans. + 1.96 1fkg

In a turbomachine handling an incompressible fluid
with a density of 1000 kg/m’ the conditions of the
fluid at the rotor entry and exit are as given below

First Law Applied to Fiow Processes

Inlet Exit
Pressure 1.15MPa  0.05 MPa
Velocity 30 m/s 15.5 m/s
Height above datum 10 m 2m

If the volume flow rate of the fluid is 40 m%/s,
estimate the net energy transfer from the fluid as
work. Ans. 60.3 MW

A room for four persons has two fans, each
consuming 0.18 kW power, and three 100 W
lamps. Ventilation air at the rate of 80 kg/h enters
with an enthalpy of 84 kJ/kg and leaves with an
enthalpy of 59 kJ/kg. If each person puts out heat
at the rate of 630 kJ/h determine the rate at which
heat is to be removed by a room cooler, so that a
steady state is maintained in the room.

Ans. 1.92 kW

Air flows steadily at the rate of 0.4 kg/s through
an air compressor, entering at 6 m/s with a pres-
sure of 1 bar and a specific volume of 0.85 m’/kg,
and leaving at 4.5 m/s with a pressure of 6.9 bar
and a specific volume of 0.16 m*kg. The internal
energy of the air leaving is 88 kJ/kg greater than
that of the air entering. Cooling water in a jacket,
surrounding the cylinder absorbs heat from the air
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at the rate of 59 W. Calculate the power required
to drive the compressor and the inlet and outlet
cross-sectional areas.

Ans. 45.4kW, 0.057 m?, 0.0142 m?

Steam flowing in a pipeline is at a steady state
represented by Py by Uy Vs hp and VP. A small
amount of the total flow is led through a small
tube to an evacuated chamber which is allowed to
fill slowly until the pressure is equal to the pipe-
line pressure. If there is no heat transfer, derive an
expression for the final specific internal energy
in the chamber, in terms of the properties in the
pipeline.

The internal energy of air is given, at ordinary

temperatures, by

u=1uy+0.718¢

where u is in kJ/kg, u,, is any arbitrary value of u

at 0°C, k)/kg, and ¢ is temperature in °C.

Also for air,

pv =0.287 (t + 273)

where p is in kPa and v is in m¥/kg.

(a) An evacuated bottle is fitted with a valve
through which air from the atmosphere, at
760 mm Hg and 25°C, is allowed to flow
slowly to fill the bottle. If no heat is trans-
ferred to or from the air in the bottle, what
will its temperature be when the pressure in
the bottle reaches 760 mm Hg?

Ans. 144.2°C

(b) If the bottle initially contains 0.03 m? of air

at 400 mm Hg and 25°C, what will the tem-

perature be when the pressure in the bottle
reaches 760 mm Hg?

Ans. 71.6°C

A pressure cylinder of volume V contains air at

pressure p, and temperature T;. It is to be filled
from a compressed air line maintained at constant

5.20
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pressure p, and temperature T,. Show that the tem-
perature of the air in the cylinder after it has been
charged to the pressure of the line is given by

r 14
- Pl T ]
T+ —=(y=—-1
Pl[ T

A small reciprocating vacuum pump having the
rate of volume displacement ¥ is used to evacuate
a large vessel of volume V. The air in the vessel is
maintained at a constant temperature T by energy
transfer as heat. If the initial and final pressures
are p, and p, respectively, find the time taken for
the pressure drop and the necessary energy trans-
fer as heat during evacuation. Assume that for air,
pV = mRT, where m is the mass and R is a con-
stant, and u is a function of T only.

Ans.t=£lnﬂ-; 0=(p,—p,)V
Ve P,
[Hint: dm = — p(V, - d)/(RT) = V dp/(RT)].
A tank containing 45 kg of water initially at 45°C
has one inlet and one exit with equal mass flow
rates. Liquid water enters at 45°C and a mass
flow rate of 270 kg/h. A cooling coil immersed
in the water removes energy at a rate of 7.6 kW.
The water is well mixed by a paddle wheel with a
power input of 0.6 kW. The pressures at inlet and
exit are equal. Ignoring changes in KE and PE,
find the variation of water temperature with time.
Ans. T=318-22[1 —exp (- 61)]
A rigid tank of volume 0.5 m? is initially evacu-
ated. A tiny hole develops in the wall, and air
from the surroundings at 1 bar, 21°C leaks in.
Eventually, the pressure in the tank reaches 1 bar.
The process occurs slowly enough that heat trans-
fer between the tank and the surroundings keeps
the temperature of the air inside the tank constant
at 21°C. Determine the amount of heat transfer.

Ans. - 50kJ



6.1 ' QUALITATIVE DIFFERENCE BETWEEN HEAT AND WORK

The first law of thermodynamics states that a certain energy balance will hold when a system undergoes a
change of state or a thermodynamic process. But it does not give any information on whether that change of
state or the process is at all feasible or not. The first law cannot indicate whether a metallic bar of uniform
temperature can spontaneously become warmer at one end and cooler at the other. All that the law can state is
that if this process did occur, the energy gained by one end would be exactly equal to that lost by the other. It is
the second law of thermodynamics which provides the criterion as to the probability of various processes.

Spontaneous processes in nature occur only in one direction. Heat always flows from a body at a higher
temperature to a body at a lower temperature, water always flows downward, time always flows in the forward
direction. The reverse of these never happens spontaneously. The spontaneity of the process is due to a finite
driving potential, sometimes called the ‘force’ or the ‘cause’, and what happens is called the ‘flux’, the ‘cur-
rent’ or the ‘effect’. The typical forces like temperature gradient, concentration gradient, and electric poten-
tial gradient, have their respective conjugate fluxes of heat transfer, mass transfer, and flow of electric current.
These transfer processes can never spontaneously occur from a lower to a higher potential. This directional
law puts a limitation on energy transformation other than that imposed by the first law.

Joule’s experiments (Article 4.1) amply demonstrate that energy, when supplied to a system in the form
of work, can be completely converted into heat (work transfer — internal energy increase — heat transfer).
But the complete conversion of heat into work in a cycle is not possible. So heat and work are not completely
interchangeable forms of energy.

When work is converted into heat, we always have

W=0
but when heat is converted into work in a complete closed cycle process
0> W

The arrow indicates the direction of energy transformation. This is illustrated in Fig. 6.1. As shown in
Fig. 6.1(a), a system is taken from state 1 to state 2 by work transfer W, _,, and then by heat transfer 0, _, the
system is brought back from state 2 to state 1 to complete a cycle. It is always found that W, _, = Q, _, Butif
the system is taken from state 1 to state 2 by heat transfer O, _,, as shown in Fig. 6. 1(b), then the system cannot
be brought back from state 2 to state 1 by work transfer W, _,. Hence, heat cannot be converted completely and
continuously into work in a cycle. Some heat has to be rejected. In Fig. 6.1(c), W, _, is the work done and 0, _,
is the heat rejected to complete the cycle. This underlies the work of Sadi Carnot, a French military engineer, who

Wa 4 1—-2—>3—1 Qs

>

Q-2 Q_>Wo 4 Q-2 Wy 3
(b) ()

Qualitative distinction between heat and work
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first studied this aspect of energy transformation (1824). Work is said to be a high grade energy and heat a low
grade energy. The complete conversion of low grade energy into high grade energy in a cycle is impossible.

6.2 ' CYCLIC HEAT ENGINE

For engineering purposes, the second law is best expressed in terms of the conditions which govern the pro-
duction of work by a thermodynamic system operating in a cycle.

A heat engine cycle is a thermodynamic cycle in which there is a net heat transfer fo the system and a net
work transfer from the system. The system which executes a heat engine cycle is called a heat engine.

A heat engine may be in the form of mass of gas confined in a cylinder and piston machine (Fig. 6.2a) or
a mass of water moving in a steady flow through a steam power plant (Fig. 6.2b).

In the cyclic heat engine, as represented in Fig. 6.2(a), heat ©Q, is transferred to the system, work W, is
done by the system, work W_ is done upon the system, and then heat Q, is rejected from the system. The
system is brought back to the initial state through all these four successive processes which constitute a heat
engine cycle. In Fig. 6.2(b) heat Q, is transferred from the furnace to the water in the boiler to form steam
which then works on the turbine rotor to produce work W, then the steam is condensed to water in the con-
denser in which an amount Q, is rejected from the system, and finally work v, is done on the system (water)
to pump it to the boiler. The system repeats the cycle.

The net heat transfer in a cycle to either of the heat engines 0u=9-0, 6.1)
and the net work transfer in a cycle W= Wo—W p 6.2)

A (or W, =W,—Wo)
By the first law of thermodynamics, we have ZQ = E /4

cycle cycle
S oot = Wiy
or 0, -0, =W, —W, (6.3)

Figure 6.3 represents a cyclic heat engine in the form of a block diagram indicating the various energy
interactions during a cycle. Boiler (B), turbine (T'), condenser (C), and pump (P), all four together constitute
a heat engine. A heat engine is here a certain quantity of water undergoing the energy interactions, as shown,
in cyclic operations to produce net work from a certain heat input.

The function of a heat engine cycle is to produce work continuously at the expense of heat input to the
system. So the net work ¥, and heat input O, referred to the cycle are of primary interest. The efficiency of
a heat engine or a heat engine cycle is defined as

Sea, river or
atmosphere

ra
@ (a) (b)

- Cyclic heat engine: (a) Heat engine cycle performed by a closed system undergoing four
successive energy interactions with the surroundings, (b) Heat engine cycle performed by a steady
flow system interacting with the surroundings as shown
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Net work output of thecycle W _, HOM 9 H,0()
n= - =t (64)

Total heat input to the cycle o) |
From Egs (6.1), (6.2), (6.3) and (6.4), W __)P/' Bﬁ__, w.

P ! VE T
B A Bl
Ql Ql Ql HZO l hzo
n=1-2 (6.5) @
o Cyclic heat engine with energy interactions

This is also known as the thermal efficiency of represented in a block diagram

a heat engine cycle. A heat engine is very often called upon

. . TER
to extract as much work (net) as possible from a certain heat (sourcHe) '
input, i.e., to maximize the cycle efficiency.
Q,

6.3 ‘ ENERGY RESERVOIRS W,
A thermal energy reservoir (TER) is defined as a large body wf______, F(' B \T
of infinite heat capacity, which is capable of absorbing or .o~ MER
rejecting an unlimited quantity of heat without suffering CHE Whet
appreciable changes in its thermodynamic coordinates. The Q
changes that do take place in the large body as heat enters or
leaves are so very slow and so very minute that all processes TER,
within it are quasi-static. (sink)

i hi t .
The thermal energy reservoir TER,; from which heat O, 5 Cyclic heat engine (CHE)

is transferred to the system operating in a heat engine cycle
is called the source. The thermal energy reservoir TER, to
which heat Q, is rejected from the system during a cycle is the sink. A typical source is a constant temperature
furnace where fuel is continuously burnt, and a typical sink is a river or sea or the atmosphere itself.

A mechanical energy reservoir (MER) is a large body enclosed by an adiabatic impermeable wall capable of
storing work as potential energy (such as a raised weight or wound spring) or kinetic energy (such as a rotating
flywheel). All processes of interest within an MER are essentially quasi-static. An MER receives and delivers
mechanical energy quasi-statically.

Figure 6.4 shows a cyclic heat engine exchanging heat with a source and a sink and delivering /¥ ina
cycle to an MER.

" with source and sink

6.4 KELVIN-PLANCK STATEMENT OF SECOND LAW
The efficiency of a heat engine is given by

,'7= Wnet =1_&

o 9
Experience shows that W_, < Q,, since heat O, transferred to a system cannot be completely converted
to work in a cycle (Article 6.1). Therefore, 7 is less than unity. A heat engine can never be 100% efficient.
Therefore, O, > 0, i.e., there has always to be a heat rejection. To produce net work in a thermodynamic cycle,
a heat engine has thus to exchange heat with two reservoirs, the source and the sink.
The Kelvin-Planck statement of the second law states: It is impossible for a heat engine to produce net

work in a complete cycle if it exchanges heat only with bodies at a single fixed temperature.
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If 0, =0 (e, W, = Q,, or n = 1.00), the heat engine will pro- ' t I
duce net work in a complete cycle by exchanging heat with only one :
reservoir, thus violating the Kelvin-Planck statement (Fig. 6.5). Such }
a heat engine is called a perpetual motion machine of the second kind,
abbreviated to PMM2. A PMM2 is impossible. @

Q

A heat engine has, therefore, to exchange heat with two thermal
energy reservoirs at two different temperatures to produce net
work in a complete cycle (Fig. 6.6). So long as there is a difference
in temperature, motive power (i.e. work) can be produced. If the
bodies with which the heat engine exchanges heat are of finite heat
capacities, work will be produced by the heat engine till the
temperatures of the two bodies are equalized. l

If the second law were not true, it would be possible to drive a

Source at t, 1
ship across the ocean by extracting heat from the ocean or to run

a power plant by extracting heat from the surrounding air. Neither (o2

of these impollibilities violates the first law of thermodynamics.

Both the ocean and the surrounding air contain an enormous store @ L - W,
of internal energy, which, in principle, may be extracted in the from

of a flow of heat. There is nothing in the first law to preclude the Q

possibility of converting this heat completely into work. The second 2

law is, therefore, a separate law of nature, and not a deduction of the ]

first law. The first law denies the possibility of creating or destroying l Sink at £,

energy; the second denies the possibility of utilizing energy in a Heat engine producing

particular way. The continual operation of a machine that creates its = " net work in a cycle by
own energy and thus violates the first law is called the PMM]1. The exchanging heat at two
operation of a machine that utilizes the internal energy of only one different temperatures

TER, thus violating the second law, is called PMM?2.

6.5 ‘ CLAUSIUS’ STATEMENT OF THE SECOND LAW

Heat always flows from a body at a higher temperature to a body at a lower temperature. The reverse process
never occurs spontaneously.

Clausius’ statement of the second law gives: It is impossible to construct a device which, operating in a
cycle, will produce no effect other than the transfer of heat from a cooler to a hotter body.

Heat cannot flow of itself from a body at a lower temperature to a body at a higher temperature. Some work
must be expended to achieve this.

6. ! REFRIGERATOR AND HEAT PUMP

A refrigerator is a device which, operating in a cycle, maintains a body at a temperature lower than the tempera-
ture of the surroundings. Let the body 4 (Fig. 6.7) be maintained at ¢,, which is lower than the ambient temperature
t,. Even though 4 is insulated, there will always be heat leakage (), into the body from the surroundings by virtue
of the temperature difference. In order to maintain, body A at the constant temperature Z,, heat has to be removed
from the body at the same rate at which heat is leaking into the body. This heat (Q,) is absorbed by a working fluid,
called the refrigerant, which evaporates in the evaporator £ at a temperature lower than £, absorbing the latent heat
of vaporization from the body 4 which is cooled or refrigerated (Process 4—1). The vapour is first compressed
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(b)

' A cyclic refrigeration plant

in the compressor C, driven by a motor which absorbs work W (Process 1-2), and is then condensed in the
condenser C, rejecting the latent heat of condensation Q, at a temperature higher than that of the atmosphere (at
t,) for heat transfer to take place (Process 2—3). The condensate then expands adiabatically through an expander
(an engine or turbine) producing work W, when the temperature drops to a value lower than ¢, such that heat Q,
flows from the body 4 to make the refrigerant evaporate (Process 3—4). Such a cyclic device of flow through
E,—C,—C,—E, is called a refrigerator. In a refrigerator cycle, attention is concentrated on the body A4. Q,and W
are of primary interest. Just like efficiency in a heat engine cycle, there is a performance parameter in a refrigera-
tor cycle, called the coefficient of performance, abbreviated to COP, which is defined as

Desired effect _ O,

COP = -
Work input 74
[COP] ;= 2 (6.6)
Q1 - Qz

A heat pump is a device which, operating in a cycle, maintains
abody, say B (Fig. 6.8), at a temperature higher than the tempera-
ture of the surroundings. By virtue of the temperature difference,
there will be heat leakage Q, from the body to the surroundings.
The body will be maintained at the constant temperature ¢,, if
heat is discharged into the body at the same rate at which heat
leaks out of the body. The heat is extracted from the low tem-
perature reservoir, which is nothing but the atmosphere, and dis-
charged into the high temperature body B, with the expenditure
of work W in a cyclic device called a heat pump. The working
fluid operates in a cycle flowing through the evaporator E 1

Body B @
att

el
Refrigerant
/
Open@]
We+— E T We
ORa(©
Q Whet = We —We
=0 -Q
’ Atmosphere l
att,

1. Fig. 68 , A cycle heat pump
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compressor C,, condenser C, and expander E,, similar to a refrigerator, but the attention is here focussed on the
high temperature body B. Here O, and ¥ are of primary interest, and the COP is defined as

cop= 2
W

9
[COoP),, , = 6.7)
e -9,
From Egs (6.6) and (6.7), it is found that
[COP], , = [COP] + 1 (6.8)

The COP of a heat pump is greater than the COP of a refrigerator by unity. Equation (6.8) expresses a very

interesting feature of a heat pump.
Since Q,=[COP),, W

=[COP_+ 1] W (6.9)

Q, is always greater than W. )

For an electrical resistance heater, if W is the electrical energy consumption, then the heat transferred to
the space at steady state is W only, i.e.,, O, = W.

A 1 kW electric heater can give 1 kW of heat at steady state and nothing more. In other words, 1 kW of work
(high grade energy) dissipates to give 1 kW of heat (low grade energy), which is thermodynamically inefficient.

However, if this electrical energy W is used to drive the compressor of a heat pump, the heat supplied O, will
always be more than W, or Q, > W. Thus, a heat pump provides a thermodynamic advantage over direct heating,

For heat to flow from a cooler to a hotter body, W cannot be zero, and hence, the COP (both for refrigerator
and heat pump) cannot be infinity. Therefore, W > 0, and COP < oo.

6.7 ' EQUIVALENCE OF KELVIN-PLANCK AND CLAUSIUS STATEMENTS

At first sight, Kelvin-Planck’s and Clausius’ statements may appear to be unconnected, but it can easily be

shown that they are virtually two parallel statements of the second law and are equivalent in all respects.
The equivalence of the two statements will be proved if it can be shown that the violation of one statement

implies the violation of the second, and vice versa. (a) Let us first consider a cyclic heat pump P which trans-

fers heat from a low temperature reservoir (¢,) to a high temperature reservoir (¢,) with no other effect, i.e.,

with no expenditure of work, violating Clausius

statement (Fig. 6.9). | Hot reservoir at t; i

Let us assume a cyclic heat engine E operating
between the same thermal energy reservoirs,
producing W_, in one cycle. The rate of working o, o,
of the heat engine is such that it draws an amount

of heat @, from the hot reservoir equal to that w=0---» @ Lo Wogt = Q- Q
discharged by the heat pump. Then the hot reservoir P E

may be eliminated and the heat O, discharged by
the heat pump is fed to the heat engine. So we see Q Q
that the heat pump P and the heat engine E acting
together constitute a heat engine operating in cycles

and producing net work while exchanging heat

only with one body at a single fixed temperature.
This violates the Kelvin-Planck statement.

Cold reservoir at t,

Violation of the Clausius statement
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(b) Let us now consider a perpetual motion machine of the l } <|

second kind (E) which produces net work in a cycle by exchang- !

ing heat with only one thermal energy reservoir (at ¢,) and thus

violates the Kelvin-Planck statement (Fig. 6.10). Q, Q1+ Q
Let us assume a cyclic heat pump (P) extracting heat Q, from

a low temperature reservoir at #, and discharging heat to the high PMM2 Woa

temperature reservoir at ¢, with the expenditure of work W equal to ) @ 1

what the PMM2 delivers in a complete cycle. So E and P together

constitute a heat pump working in cycles and producing the sole 1

effect of transferring heat from a lower to a higher temperature Q;

body, thus violating the Clausius statement.

1]
o

Q,

t |

6.6\ REVERSIBILITY AND IRREVERSIBILITY B Violation of the Keloin-Planck

The second law of thermodynamics enables us to divide all pro- statement
cesses into two classes:

(a) Reversible or ideal process.
(b) Irreversible or natural process.

A reversible process is one which is per- A
formed in such a way that at the conclusion of >
the process, both the system and the surround-
ings may be restored to their initial states, with-
out producing any changes in the rest of the
universe. Let the state of a system be represented
by 4 (Fig. 6.11), and let the system be taken to
state B by following the path 4—B. If the system
and also the surroundings are restored to their @ (b)
initial states and no change in the universe is Reversible process
produced, then the process A—B will be a revers-
ible process. In the reverse process, the system has to be taken from state B to 4 by following the same path
B—A. A reversible process should not leave any trace or relic to show that the process had ever occurred.

A reversible process is carried out infinitely slowly with an infinitesimal gradient, so that every state passed
through by the system is an equilibrium state. So a reversible process coincides with a quasi-static process.

Any natural process carried out with a finite gradient is an irreversible process. A reversible process,
which consists of a succession of equilibrium states, is an idealized hypothetical process, approached only as
a limit. It is said to be an asymptote to reality. All spontaneous processes are irreversible.

System Wa_s

A8

Ws_a _—

6.9 ‘ CAUSES OF IRREVERSIBILITY

Broken eggs, split milk, burnt boats, the wasted years of indolence that the locusts have eaten are merly pro-
verbial metaphors for irreversibility.
The irreversibility of a process may be due to either one or both of the following:

(a) Lack of equilibrium during the process.
(b) Involvement of dissipative effects.
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6.9.1 Irreversibility due to Lack of Equilibrium

The lack of equilibrium (mechanical, thermal or chemical) between
the system and its surroundings, or between two systems, or two
parts of the same system, causes a spontaneous change which is
irreversible. The following are specific examples in this regard:

(a) Heat Transfer through a Finite Temperature Difference A
heat transfer process approaches reversibility as the temperature dif-
ference between two bodies approaches zero. We define a reversible
heat transfer process as one in which heat is transferred through an
infinitesimal temperature difference. So to transfer a finite amount
of heat through an infinitesimal temperature difference would
require an infinite amount of time, or infinite area. All actual heat
transfer processes are through a finite temperature difference and
are, therefore, irreversible, and greater the temperature difference,
the greater is the irreversibility.

We can demonstrate by the second law that heat transfer through
a finite temperature difference is irreversible. Let us assume that a
source at 7, and a sink at 7, (¢, > #,) are available, and let Q '\ _p DE
the amount of heat flowing from 4 to B (Fig. 6.12). Let us assume
an engine operating between 4 and B, taking heat Q, from 4 and
discharging heat Q, to B. Let the heat transfer process be reversed,
and Oy _, be the heat flowing from B to 4, and let the rate of work-
ing of the engine be such that 0, =05 4

(Fig. 6.13). Then the sink B may be eliminated. The net result is
that £ produces net work W in a cycle by exchanging heat only with
A, thus violating the Kelvin-Planck statement. So the heat transfer
process Q, _y is irreversible, and Q, _, is not possible.

(b) Lack of Pressure Equilibrium within the Interior of the
System or between the System and the Surroundings When
there exists a difference in pressure between the system and the
surroundings, or within the system itself, then both the system and
its surroundings or the system alone, will undergo a change of state
which will cease only when mechanical equilibrium is established.
The reverse of this process is not possible spontaneously without
producing any other effect. That the reverse process will violate the
second law becomes obvious from the following illustration.

(c) Free Expansion Let us consider an insulated container
(Fig. 6.14) which is divided into two compartments 4 and B by a thin
diaphragm. Compartment 4 contains a mass of gas, while compartment
B is completely evacuated. If the diaphragm is punctured, the gas in
A will expand into B until the pressures in 4 and B become equal. This
is known as free or unrestrained expansion. We can demonstrate by
the second law, that the process of free expansion is irreversible.

Source A, t,

Q,

©

net

Qa8

Q;

' Sink

B, tB

. Heat transfer a finite

temperature difference

Source A,

ta

QB~A 02

L

net

, Sink B, tg

. Heat transfer th

rough a finite

ey
temperature difference is
irreversible

ZI nsulation

% Free expansion
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There is no other effect. Let us install an engine (a machine,
not a cyclic heat engine) between 4 and B, and permit the gas to
expand through the engine from 4 to B. The engine develops a
work output W at the expense of the internal energy of the gas.

Heat
| !
SR ZIANTY]  source.t

To prove this, let us assume that free expansion is revers- 7 7 7Z AL 77 L /
ible, and that the gas in B returns into 4 with an increase in % g é l’
pressure, and B becomes evacuated as before (Fig. 6.15). ? A/ \B A

%
7 4

The internal energy of the gas (system) in B can be restored to Engine
its initial value by heat transfer O (= W) from a source. Now, w
by the use of the reversed free expansion, the system can be  “Big 848" Second law demonstrates that free

restored to the initial state of high pressure in 4 and vacuum in - expansion is irreversible
B. The net result is a cycle, in which we observe that net work
output W is accomplished by exchanging heat with a single reservoir. This violates the Kelvin-Planck statement.
Hence, free expansion is irreversible.

The same argument will hold if the compartment B is not in vacuum but at a pressure lower than that in
compartment 4 (case b).

6.9.2 Irreversibility due to Dissipative Effects

The irreversibility of a process may be due to the dissipative effects in which work is done without producing an
equivalent increase in the kinetic or potential energy of any system. The transformation of work into molecular
internal energy either of the system or of the reservoir takes place through the agency of such phenomena as
friction, viscosity, inelasticity, electrical resistance, and magnetic hysteresis. These effects are known as dissipa-
tive effects, and work is said to be dissipated. Dissipation of energy means the transition of ordered macroscopic
motion into chaotic molecular motion, the reverse of which is not possible without violating second law.

(a) Friction Friction is always present in moving devices. Friction may be reduced by suitable lubrication,
but it can never be completely eliminated. If this were possible, a movable device could be kept in continual
motion without violating either of the two laws of thermodynamics. The continual motion of a movable device
in the complete absence of friction is known as perpetual motion of the third kind.

That friction makes a process irreversible can be demonstrated by the second law. Let us consider a system
consisting of a flywheel and a brake block (Fig. 6.16). The flywheel was rotating with a certain rpm, and it
was brought to rest by applying the friction brake. The distance moved by the brake block is very small, so
work transfer is very nearly equal to zero. If the braking process occurs very rapidly, there is little heat trans-
fer. Using suffix 2 after braking and suffix 1 before braking, and applying the first law, we have

Q1. =E,—E + W, _, 0=E,—-E+0 Flywheel Brake block
) E, =E, 6.16; - ————- ——=-
The energy of the system (isolated) remains constant. Since
the energy may exist in the forms of kinetic, potential, and
molecular internal energy, we have

+mZg

U+ ™2 ¢ mzg=U, + ™%
2 2

t
|
i
|
I
!
|
!
1
|

Since the wheel is brought to rest, V, = 0, and there is no
change in PE.

2
U,=U, + mV {6.11)
2

#: Irreversibility due to dissipative
effect like friction
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Therefore, the molecular internal energy of the system (i.e., of the brake and the wheel) increases by the
absorption of the K.E. of the wheel. The reverse process, i.c., the conversion of this increase in molecular
internal energy into K.E. within the system to cause the wheel to rotate is not possible. To prove it by the
second law, let us assume that it is possible, and imagine the following cycle with three processes:

Process A: Initially, the wheel and the brake are at high temperature as a result of the absorption of the K.E.
of the wheel, and the flywheel is at rest. Let the flywheel now start rotating at a particular rpm at the expense
of the internal energy of the wheel and brake, the temperature of which will then decrease.

Process B: Let the flywheel be brought to rest by using its K.E. in raising weights, with no change in
temperature.

Process C: Now let heat be supplied from a source to the flywheel and the brake, to restore the system to its
initial state.

Therefore, the processes 4, B, and C together constitute a cycle producing work by exchanging heat with
a single reservoir. This violates the Kelvin-Planck statement, and it will become a PMM2. So the braking
process, i.e., the transformation of K.E. into molecular internal energy, is irreversible.

(b) Paddle-Wheel Work Transfer Work may be transferred into a system in an insulated container by
means of a paddle wheel (Fig. 6.17) which is also known as stirring work. Here work transferred is dissipated
adiabatically into an increase in the molecular internal energy of the system. To prove the irreversibility of the
process, let us assume that the same amount of work is delivered by the system at the expense of its molecular
internal energy, and the temperature of the system goes down (Fig. 6.18). The system is brought back to
its initial state by heat transfer from a source. These two processes Insulation
together constitute a cycle in which there is work output and the system

exchanges heat with a single reservoir. It becomes a PMM2, and hence N
the dissipation of stirring work to internal energy is irreversible. ; e o /]

g

\
A 7r

(c) Transfer 4;]]; Electricit'y through a Resi.;s(tor Tfhe fl‘l)ow of el::}cl:- \< L ”

tric current through a wire represents work transfer, because the g

current can drive ag:mtor whichréan raise a weight. Taking the wire or //X\/—/S{s’t/eg/////

the resistor as the system (Fig. 6.19) and writing the first law B Adiabatic work transfer
O _,=U,-U+W _,

Here both #, _, and Q, _, are negative. Diathermic Adiabatic
Wy ,=U,- U+ 0, _, 6.12) A TIII777Z,

A part of the work transfer is stored as an increase :‘/M_o_; ;V,; \ 46_. w
in the internal energy of the wire (to give an increase in Heat f O~ i \:\,{.;,.x;/
its temperature), and the remainder leaves the system as source : Lot

heat. At steady state, the internal energy and hence the
temperature of the resistor become constant with respect
to time and

b Irreversibility due to dissipation of
stirring work into internal energy

W, 2=01, (6.13) w Resistor (system)
The reverse process, i.e., the conversion of heat Q, _ 2 ! AN y p
into electrical work W, _, of the same magnitude is not A w
possible. Let us assume that this is possible. Then heat \
Q, _, will be absorbed and equal work W, _, will be deliv- Q

ered. But this will become a PMM2. So the dissipation of Irreversibility due to dissipation of
electrical work into internal energy or heat is irreversible. electrical work into internal energy
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6.10 ‘ CONDITIONS FOR REVERSIBILITY

A natural process is irreversible because the conditions for mechanical, thermal and chemical equilibrium
are not satisfied, and the dissipative effects, in which work is transformed into an increase in internal energy,
are present. For a process to be reversible, it must not possess these features. If a process is performed quasi-
statically, the system passes through states of thermodynamic equilibrium, which may be traversed as well in one
direction as in the opposite direction. If there are no dissipative effects, all the work done by the system during
the performance of a process in one direction can be returned to the system during the reverse process.

A process will be reversible when it is performed in such a way that the system is at all times infini-
tesimally near a state of thermodynamic equilibrium and in the absence of dissipative effect of any form.
Reversible processes are, therefore, purely ideal, limiting cases of actual processes.

6.11 ' CARNOT CYCLE

A reversible cycle is an ideal hypothetical cycle in

which all the processes constituting the cycle are Source, 4
reversible. Carnot cycle is a reversible cycle. For Diathermic cover (A)
a stationary system, as in a piston and cylinder Q
machine, the cycle consists of the following four X i st
successive processes (Fig. 6.20): Adiabatic § ; j:/lf\:\;\l iwj
(a) A reversible isothermal process in which heat cover (B) \ Lo /// A
Q, enters the system at ¢, reversibly from a constant N\ i
temperature source at ¢, when the cylinder cover is Q S o
in contact with the diathermic cover 4. The internal ystem *-Adiabatic
energy of the system increases. Sink, 2,
From First law, =U-U +W 6.14
(for an ideal gas O%fy, U, 2: Uz)] 2 (619 -Camot heat engine-stationary system

(b) A reversible adiabatic process in which the
diathermic cover 4 is replaced by the adiabatic cover B, and work W, is done by the system adiabatically and
reversibly at the expense of its internal energy, and the temperature of the system decreases from ¢, to ¢,.

Using the first law, 0=U,~U,+W,_, (6.15)

(c) A reversible isothermal process in which B is replaced by 4 and heat Q, leaves the system at ¢, to a
constant temperature sink at ¢, reversibly, and the internal energy of the system further decreases.

From the first law, -0,=U,-U, - W,
only for an ideal gas, U, = U,

(d) A reversible adiabatic process in which B again
replaces 4, and work W_ is done upon the system revers-
ibly and adiabatically, and the internal energy of the
system increases and the temperature rises from ¢, to ¢,.

Applying the first law, T

o0=U,-U,—-W,_, (6.17)

Two reversible isotherms and two reversible adiabat-
ics constitute a Carnot cycle, which is represented in
p—v coordinates in Fig. 6.21. — v

= yom——

(6.16)

-4

Rev. adiabatics

Rev. isotherm (t,)

Rev. isotherm (t,)
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Summing up Eqs (6.14) to (6.17),

0, _sz(W1—2+W2—3)—(W3—4+ W,_)

or . ZQ =ZW

cycle M€t cycle  Pet

A cyclic heat engine operating on the Carnot cycle is

called a Carnot heat engine.

For a steady flow system, the Carnot cycle is rep-
resented as shown in Fig. 6.22. Here heat Q, is trans-
ferred to the system reversibly and isothermally at ¢, in
the heat exchanger 4, work W, is done by the system
reversibly and adiabatically in the turbine (B), then

heat @, is transferred from the system reversibly and

isothermally at #, in the heat exchanger (C), and then work W, is done upon the system reversibly and adia-
batically by the pump (D). To satisfy the conditions for the Carnot cycle, there must not be any friction or heat
transfer in the pipelines through which the working fluid flows.

6.12 ' REVERSED HEAT ENGINE

Since all the processes of the Carnot cycle are
reversible, it is possible to imagine that the pro-
cesses are individually reversed and carried out
in reverse order. When a reversible process is
reversed, all the energy transfers associated with
the process are reversed in direction, but remain
the same in magnitude. The reversed Carnot cycle
for a steady flow system is shown in Fig. 6.23. The
reversible heat engine and the reversed Carnot heat
engine are represented in block diagrams in Fig.
6.24. If E is a reversible heat engine (Fig. 6.24a),

and if it is reversed (Fig. 6.24b), the quantities Q,,

0, and W remain the same in magnitude, and only

I System
:f boundry
|

l
wp 1 Wy
|
i
|
|

3L Reversed carnot heat engine-steady
flow process

their directions are reversed. The reversed heat engine 7 takes heat from a low temperature body, discharges
heat to a high temperature body, and receives an inward flow of network.

| f |
Q
N
We—= D E BlL—wy
C

Q>

(@)

Wiet = Wr—Wp

WP<— D 3 B je— WT
*— Woe = Wr—Wp

(b)

Carnot heat engine and reversed Carnot heat engine shown in block diagrams
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The names heat pump and refrigerator are applied to ‘
the reversed heat engine, which have already been dis-
cussed in Sec. 6.6, where the working fluid flows through
the compressor (B), condenser (4), expander (D), and 1044 Qi
evaporator (C) to complete the cycle. ‘

P OI=NO
6.13 CARNOT’S THEOREM

It states that of all heat engines operating between a
given constant temperature source and a given constant Qaa Qzp
temperature sink, none has a higher efficiency than a
reversible engine.

Let two heat engines E, and Ej operate between the
given source at temperature ¢, and the given sink at tem- Two cyclic heat engines E,, and E,;
perature ¢, as shown in Fig. 6.25. operating between the same source

Let E, be any heat engine and E,, be any reversible and sink, of which Eg is reversible
heat engine. We have to prove that the efficiency of Ej, is
more than that of E,,. Let us assume that this is not true and

Source, t4 |

Sink, t, |

7, > 7M. Let the rates of W(:rklng 0~f the engines be such that | Source, 1, l
Q.= =9

Since 7, > 7y
w 4
—A > _B Qia Qi
QIA QIB

WA>WB —W>A->
Wg

Now, let £, be reversed. Since Ej, is a reversible heat engine, the
magnitudes ofheatand work transfer quantities will remain the same,
but their directions will be reversed, as shown in Fig. 6.26. Since
W, > Wy, some part of W, (equal to W) may be fed to drive the
reversed heat engine 3. l

Since Q,, = Q5= Q,, the heat discharged by 3, may be supplied
to E,. The source may, therefore, be eliminated (Fig. 6.27). The net
result is that £, and 3 together constitute a heat engine which,
operating in a cycle, produces net work ¥, — W, while exchanging
heat with a single reservoir at ¢,. This violates the Kelvin-Planck Qia= Q4 Qs = Q,
statement of the second law. Hence the assumption that ), > 7;, is

wrong. Wa Ws
=1

Therefore uN

OZA 023

6.14 ‘ COROLLARY OF CARNOT’S THEORE M

The efficiency of all reversible heat engines operating betwcen tl:e ’ Sink, t, ‘
same temperature levels is the same.

Let both the heat engines E, and E; (Fig. 6.25) be reversible. E , and 3 together violate the
Let us assume 7, > 7,. Similar to the procedure outlined in the K-P statement
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preceding article, if Ej is reversed to run, say, as a heat pump using some part of the work output w,) of
engine E,, we see that the combined system of heat pump Ey and engine E,,, becomes a PMM2. So 7, cannot
be greater than 7. Similarly, if we assume N > 1, and reverse the engine E,, we observe that 7, cannot be
greater than 7),.

Therefore NSRS

Since the efficiencies of all reversible heat engines operating between the same heat reservoirs are the
same, the efficiency of a reversible engine is independent of the nature or amount of the working substance
undergoing the cycle.

6.15 ABSOLUTE THERMODYNAMIC TEMPERATURE SCALE

The efficiency of any heat engine cycle receiving heat O, and rejecting heat Q, is given by
n=tm 20 _; & (6.18)
0 o 9
By the second law, it is necessary to have a temperature difference (¢, — t,) to obtain work of any cycle. We
know that the efficiency of all heat engines operating between the same temperature levels is the same, and it
is independent of the working substance. Therefore, for a reversible cycle (Carnot cycle), the efficiency will
depend solely upon the temperatures ¢, and ¢,, at which heat is transferred, or

New =S (115 1) (6.19)
where f signifies some function of the temperatures. From Egs (6.18) and (6.19)
o,
- - =f (l > L )
Q] 1° %2
In terms of a new function F 0
=L =F@,1) (6.20)
o,

If some functional relationship is assigned
between #,, #, and Q,/Q,, the equation becomes the I

definition of a temperature scale. Heat reservoir, t, I

Let us consider two reversible heat engines, E,
receiving heat from the source at ¢, and rejecting Q, Q,
heat at 7, to E, which, in turn, rejects heat to the
sink at 1, (Fig. 6.28). | @ . w,-0,- 0,
Now o =F(t,, t,); % =F(t, 1)
o, s Q, @ — W3=Q, - Q4

E| and E, together constitute another heat engine E, t
operating between ¢, and ¢,. Q,

o _

Q_3 —'F(tl’ 13) @ M Wo=Q,- Q3
Now g_ — &/23_ t Qa 03

2, 0,/0; [ |

Heat reservoir, t
F(t,,t '3
o 2 =F(t, 1) = LGRE

0, F(ty,t5) 6.21) @D T7cc Carnot engines
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The temperatures ¢, ¢, and #, are arbitrarily chosen. The ratio Q,/Q, depends only on 7, and ¢,, and is
independent of ¢,. So ¢, will drop out from the ratio on the right in Eq. (6.21). After it has been cancelled, the
numerator can be written as ¢(¢,), and the denominator as #(t,), where ¢ is another unknown function. Thus

Q _p, = 20

0, #(t;)
Since ¢(?) is an arbitrary function, the simplest possible way to define the absolute thermodynamic tem-
perature T is to let ¢(f) = T, as proposed by Kelvin. Then, by definition

. _4 6.22)
o T
The absolute thermodynamic temperature scale is also known as the Kelvin scale. Two temperatures on
the Kelvin scale bear the same relationship to each other as do the heats absorbed and rejected respectively
by a Carnot engine operating between two reservoirs at these temperatures. The Kelvin temperature scale is,
therefore, independent of the peculiar characteristics of any particular substance.
The heat absorbed Q, and the heat rejected O, during the two revers-
ible isothermal processes bounded by two reversible adiabatics in a Carnot | T l

engine can be measured. In defining the Kelvin temperature scale also, the
triple point of water is taken as the standard reference point. For a Carnot Q
engine operating between reservoirs at temperatures Tand T, T, being the @ oW
triple point of water (Fig. 6.29), arbitrarily assigned the value 273.16 K, et
2 _ % )
o ' 0 r T, = 273.16K |
T=273.16 —Q—— (6.23) Carnot heat enci
t ‘arnot heat engine

If this equation is compared with the equations given in with sink at triple
Article 2.3, it is seen that in the Kelvin scale, Q plays the point of water
role of thermometric property. The amount of heat supply O
changes with change in temperature, just like the thermal emf
in a thermocouple. [ Ty J

It follows from the Eq. (6.23), T = 273.16 EQ— Q,

t

that the heat transferred isothermally between the given adia- [:E1 Wi=0Q,-Q;
batics decreases as the temperature decreases. Conversely, the Q,
smaller the value of Q, the lower the corresponding 7. The small- Ty —
est possible value of Q is zero, and the corresponding T is abso- Q@
lute zero. Thus, if a system undergoes a reversible isothermal I___-Ea——v W,=Q;-Q
process without transfer of heat, the temperature at which this
process takes place is called the absolute zero. Thus, at absolute Ty — Qs
zero, an isotherm and an adiabatic are identical. Q3

That the absolute thermodynamic temperature scale has a E-ELJ_, Ws=Qs— Q4
definite zero point can be shown by imagining a series of revers-
ible engines, extending from a source at 7, to lower tempera- T Q,
tures (Fig. 6.30). 4 Q.

_ 2

. T .
Since — B Heat engines operating in series
T2 Q2
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I,-T, - -9,
I 0,
T,
or I'-T,=(Q, - Q) =
0,
Similarly
L-T,=@-0) 2
2 3 2 3 0,
T
=Q,-0y 2
2 3 0,
T,
I,-T,=(Q;,—- Q) == andsoon.
0,
7, -T,=T,— I, =T, - T, = ..., assuming equal temperature intervals
Q]‘QZ:Q2-Q3:Q3_Q4:~"
or W=W,=W,=..

Conversely, by making the work quantities performed by the engines in series equal (W, =W, =W, =),
we will get I-T,=0,-T,=T,-T,= ...
at equal temperature intervals. A scale having one hundred equal intervals between the steam point and the
ice point could be realized by a series of one hundred Carnot engines operating as in Fig. 6.30. Such a scale
would be independent of the working substance.

If enough engines are placed in series to make the total work output equal to Q,, then by the first law the
heat rejected from the last engine will be zero. By the second law, however, the operation of a cyclic heat
engine with zero heat rejection cannot be achieved, although it may be approached as a limit. When the
heat rejected approaches zero, the temperature of heat rejection also approaches zero as a limit. Thus it
appears that a definite zero point exists on the absolute temperature scale but this point cannot be reached
without a violation of the second law.

Thus any attainable value of absolute temperature is always greater than zero. This is also known as the
Third Law of Thermodynamics which may be stated as follows: Jt is impossible by any procedure, no matter
how idealized, to reduce any system to the absolute zero of temperature in a finite number of operations.

This is what is called the Fowler-Guggenheim statement of the third law. The third law itself is an
independent law of nature, and not an extension of the second law. The concept of heat engine is not
necessary to prove the non-attainability of absolute zero of temperature by any system in a finite number
of operations.

6.16 ' EFFICIENCY OF THE REVERSIBLE HEAT ENGINE

The efficiency of a reversible heat engine in which heat is received solely at T, is found to be

T
nm=n.mx=1—[&] =1-2
&) rev I,

L -T,

I,

or Ny =
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It is observed here that as T, decreases, and T increases, the efficiency of the reversible cycle increases.

Since 7 is always less than unity, T, is always greater than zero and positive.

The COP of a refrigerator is given by

(COP)wﬁ — Q2 — Ql .
-0, 0.
Q,
For a reversible refrigerator, using
9 _4
0, I
T.
COP, = 2
[ refr]rev T1 _ T2
Similarly, for a reversible heat pump
T,
[COPy bl = T —1T2

(6.24)

(6.25)

6.17 ! EQUALITY OF IDEAL GAS TEMPERATURE AND KELVIN TEMPERATURE

Let us consider a Carnot cycle executed by an ideal gas, as shown in Fig. 6.31.

The two isothermal processes a—b and c—d are represented by equilateral hyperbolas whose equations are

respectively pV=nR0,
and pV=nR0,

For any infinitesimal reversible process of an ideal gas, the first law may be written as

4Q = C,do + pdV

Applying this equation to the isothermal process a—b, the heat absorbed is found to be

_ Ve _ Vy nRGl _
Q,_fya pdV _fv. 27 av = nRo

14
Similarly, for the isothermal process c—d, the heat rejected is

V
=nRO, In <
0, = kO, In

o O
=l - Va (6.26)
Z 6,In—<
v d Q

Since the process b—c is adiabatic, the first law gives

0!
R@ 1 de 14
Cdo=pdv=""av —|cCc & =m=

b
Similarly, for the adiabatic process d—a
4

L .a_ Vs

nR ‘!‘ Cv _9_' =In V—

a

4
lln-_b
v

Reversible
Adiabatics

Reversible
Isotherms

Q2

—_— v
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In Y. =In Yo
Vb Va
or . ve = Vs
Vb Va
14
or W _ Y 6.27)
Vv, V,
Equation (6.26) thus reduces to
9 _6 (6.28)
2, 6
Kelvin temperature was defined by Eq. (6.22)
o _4h
0, T,
If 6 and T refer to any temperature, and 6, and T, refer to the triple point of water,
6 _T
6 T
Since 6, = T, = 273.16 K, it follows that
0=T (6.29)

The Kelvin temperature is, therefore, numerically equal to the ideal gas temperature and may be measured
by means of a gas *hermometer.

6.18 ' TYPES OF IRREVERSIBILITY

It has been discussed in Sec. 6.9 that a process becomes irreversible if it occurs due to a finite potential
gradient like the gradient in temperature or pressure, or if there is dissipative effect like friction, in
which work is transformed into internal energy increase of the system. Two types of irreversibility can be
distinguished:

(a) Internal irreversibility
(b) External irreversibility »

The internal irreversibility is caused by the internal dissipative effects like friction, turbulence, electrical
resistance, magnetic hysteresis, etc. within the system. The external irreversibility refers to the irreversibil-
ity occurring at the system boundary like heat interaction with the surroundings due to a finite temperature
gradient.

Sometimes, it is useful to make other distinctions. If the irreversibility of a process is due to the dissipa-
tion of work into the increase in internal energy of a system, or due to a finite pressure gradient, it is called
mechanical irreversibility. If the process occurs on account of a finite temperature gradient, it is thermal
irreversibility, and if it is due to a finite concentration gradient or a chemical reaction, it is called chemical
irreversibility. N

A heat engine cycle in which there is a temperature difference (i) between the source and the working fluid
during heat supply, and (ii) between the working fluid and the sink during heat rejection, exhibits external
thermal irreversibility. If the real source and sink are not considered and hypothetical reversible processes for
heat supply and heat rejection are assumed, the cycle can be reversible. With the inclusion of the actual source
and sink, however, the cycle becomes externally irreversible.
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I Example 6.1

A cyclic heat engine operates between a source temperature of 800°C and a sink temperature of 30°C.
What is the least rate of heat rejection per kW net output of the engine?

Solution For a reversible engine, the rate of heat rejection will be minimum (Fig. Ex. 6.1).

T2
Mmax = They = 1 — T_
| l T, =1073K |
_ . 304273 Source
800+ 273 o,

=1-0.282=0.718

Now Woer =7 = 0.718 @ W=0Q,-Q;=1kW

Q .
0, = 0718 = 1.392 kW Q,
=0, - = - Sink
Now 0,=0,-W,,=1392-1 ‘ T, 303K ‘
= 0.392 kW

This is the least rate of heat rejection. -

Example 6.2

A domestic food freezer maintains a temperature of —15°C. The ambient air temperature is 30°C. If heat
leaks into the freezer at the continuous rate of 1.75 kJ/s what is the least power necessary to pump this heat
out continuously?

Solution Freezer temperature,

T,=—15+273=258K Ambient air T, = 303 K ‘

Ambient air temperature,
Q
T,=30+273=303K k
The refrigerator cycle removes heat from the freezer at the same
rate at which heat leaks into it (Fig. Ex. 6.2). W — @
For minimum power requirement
9 _Q Q
T, T,
Freezer T, = 258 K
0,= L7 303 =2.06klls 2
2.8 7
W=0 -0, Q,=1.75kJ/s

=2.06 — 1.75 = 0.31 kJ/s = 0.31 kW o
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Example 6.3

Solution (a) Maximum efficiency of the heat engine cycle (Fig. Ex. 6.3) is given by

_ T, 313
=1-0.358 = 0.642
Again Ly =0.642
o
W, =0.642 x 2000 = 1284 kJ
Maximum COP of the refrigerator cycle

OoP) = 13— 28 __ 45
T,-T, 313-253
Also COP= 2 — 42
W2
Since W, — W, = W=360K

W, =W, — W= 1284 — 360 = 924 kJ
Q, =422 x 924 = 3899 kJ
Q,=Q, + W, =924 + 3899 = 4823 kJ

Q,=0Q, — W, =2000 — 1284 =716 kJ

Heat rejection to the 40°C reservoir

‘ T, =873K ‘
/

Q, = 2000 kJ

A reversible heat engine operates between two reservoirs at temperatures of 600°C and 40°C. The engine drives
a reversible refrigerator which operates between reservoirs at temperatures of 40°C and —20°C. The heat trans-
Jer to the heat engine is 2000 kJ and the net work output of the combined engine refrigerator plant is 360 kJ.

(a) Evaluate the heat transfer to the refrigerant and the net heat transfer to the reservoir at 40°C.
(b) Reconsider (a) given that the efficiency of the heat engine and the COP of the refrigerator are each
40% of their maximum possible values.

T,=253K '

Qq

Clam

=0, + 0, =716 + 4823 = 5539 kJ

(b) Efficiency of the actual heat engine cycle

n=04n_ =04 x0.642
W, =04 x0.642 x 2000=513.6 kJ
W,=513.6 — 360 = 153.6 kJ

COP of the actual refrigerator cycle

cop=24 —04x422-169

2
Therefore

Q,=153.6 x 1.69 =

259.6 kJ

Ans. (a)
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0, =259.6 + 153.6 = 413.2kJ Ans. (b)
Q,=0, — W, =2000 — 513.6 = 1486.4 kJ

Heat rejected to the 40°C reservoir
=0, + Q,=413.2 + 1486.4 = 1899.6 kJ Ans. (b)

I Example 6.4

Which is the more effective way to increase the efficiency of a Carnot engine: to increase T 1 keeping T,
constant, or to decrease T,, keeping T, constant?
Solution The efficiency of a Carnot engine is given by
T.
n=1--2
I

[a_n _ I
oL}, ~ 17

0
As T, increases, 7 increases, and the slope [_TI
creases (Fig. Ex. 6.4.1).

If T, is constant,

If T, is constant

l 67] ] _ _l 1.0
oT, T, T on Siope = —1/T,
As T, decreases, increases, but the slope [6——] remains <
constant (Fig. Ex. 6.4.2). T, T, 1
T. T,

Also [@—J =—2 and [—Bl] =—-— 0

0
Since T, >T, _77] >[ﬁ]

o7, I T, T,

So, the more effective way to increase the efficiency is
to decrease T,. Alternatively, let T, be decreased by AT with T, remaining the same

T,-AT
=1 2727
™ T,
If T, is increased by the same A7, T, remaining the same
=1 T2
=T L YAT
Then
. _ T, T,-AT _ (T,-T,)AT +(AT)?
NTRETIAT T T, L4447
Since I'>T,(m—n)>0

The more effective way to increase the cycle efficiency is to decrease T,,.
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Example 6.5

Kelvin was the first to point out the thermodynamic wastefulness of burning fuel for the direct heating of
a house. It is much more economical to use the high temperature heat produced by combustion in a heat
engine and then to use the work so developed to pump heat from outdoors up to the temperature desired in
the house. In Fig. Ex. 6.5 a boiler furnishes heat Q, at the high temperature T,. This heat is absorbed by
a heat engine, which extracts work W and rejects the waste heat Q, into the house at T,. Work W is in turn
used to operate a mechanical refrigerator or heat pump, which extracts Q, from outdoors at temperature
T, and reject Q', (where Q', = Q; + W) into the house. As a result of this cycle of operations, a total
quantity of heat equal to Q, + (7, is liberated in the house, against Q, which would be provided directly by
the ordinary combustion of the fuel. Thus the ratio (Q, + Q',)/Q, represents the heat multiplication factor
of this method. Determine this multiplication factor if T, = 473 K, T, = 293 K, and T, = 273 K.

Solution For the reversible heat engine (Fig. Ex. 6.5)

& _I
Q' h Boiler
0,=0, [T—ZJ &% T
1 } Q
Also n=Z=TI_T2 CHE
) T w
— T 1 -T 2 102
or W= T, g% House
For the reversible heat pump T2
li
cor=2 - _D Jas=a,+w
w T,-T,
w
0,=-2_n0h g @
: T,-T, T, !
Multiplication factor (M.F.) 1‘03
0 T_2 +0, T, .T, -T, Outdoors
- 0,+0; 1Tl : I,-T, T LR

Q 9, L

T —T,T, +T,T, - T}

or MF = :
(T, -T3)
or mE = 2 =T
nL{I,-1,)
Here T,=473K,T,=293Kand T, = 273K

Ans.

_ 293(473-273) _ 2930 _ 6.3
473(293—-273) 473
which means that every kg of coal burned would deliver the heat equivalent to over 6 kg. Of
course, in an actual case, the efficiencies would be less than Carnot efficiencies, but even with a
reduction of 50%, the possible savings would be quite significant.
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Example 6.6

It is proposed that solar energy be used to warm a large collector plate. This energy would, in turn, be
transferred as heat to a fluid within a heat engine, and the engine would reject energy as heat to the atmo-
sphere. Experiments indicate that about 1880 kJ/m’ h of energy can be collected when the plate is operat-
ing at 90°C. Estimate the minimum collector area that would be required for a plant producing 1 kW of
useful shaft power. The atmospheric temperature may be assumed to be 20°C.

Solution The maximum efficiency for the heat engine operating between the collector plate temperature
and the atmospheric temperature is
T 293
=1-=2% =1-22= =0.192
Thnax T, 363
The efficiency of any actual heat engine operating between these temperatures would be less
than this efficiency.

o =X _1MIs o
o 0.192
= 18,800 kJ/h

.. Minimum area required for the collector plate

_ 18,800
1880

= 10 m? Ans.

Example 6.7

A reversible heat engine in a satellite operates between a hot reservoir at T, and a radiating panel at T,
Radiation from the panel is proportional to its area and to T, L4 For a given work output and value of T,

T.
show that the area of the panel will be minimum when -2 =0.75.
1
Determine the minimum area of the panel for an output of 1 kW if the constant of proportionality is

5.67 x 10~8 W/m?* K* and T, is 1000 K.

Solution For the heat engine (Fig. Ex. 6.7), the heat rejected Q, to the panel (at T;)
is equal to the energy emitted from the panel to the surroundmgs by radla- T

tion. If 4 is the area of the panel, O, o< AT,*, or Q, = KAT,*, where K is a

constant. A a,
/4 T, —T.
Now n= — =-1—2% w
9, T,
4
o W _ 0 _0, _ KAT; oo TS
-1, 1, T, T,
Panel
= KAT; T,
v W 5

K@) KT |
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6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8
6.9

6.10

6.11

For a given W and T, 4 will be minimum when

dA w ~
E = —-—E (3T1T22 - 4T23) . (T]TZ3 — T24) 2=0
Since (T\T} — T,y 2 =0, 3T,T,2 = 4T}
T2
—= = (0.75 Proved.
Tl
4 - w
™ K(0.75)°T (T, — 0.75T))
" asew
k2lre T 27KT}
256
Here W=1kW,K =567 x 10 W/m2 K%, and T, = 1000 K

256 x1kW x m?K*

A =
" 27%5.67x107 W x(1000)* K¢

256 x10°

m? = 0.1672 m? Ans.

27x5.67x107% x10"2

What is the qualitative difference between heat
and work? Why are heat and work not completely
interchangeable forms of energy?

What is a cyclic heat engine?

Explain a heat engine cycle performed by a closed
system.

Explain a heat engine cycle performed by a steady
flow system.

Define the thermal efficiency of a heat engine
cycle. Can this be 100%?

Draw a block diagram showing the four energy
interactions of a cyclic heat engine.

What is a thermal energy reservoir? Explain the
terms ‘source’ and ‘sink’

What is a mechanical energy reservoir?

Why can all processes in a TER or an MER be
assumed to be quasi-static?

Give the Kelvin-Planck statement of the second
law.

To produce net work in a thermodynamic cycle,
a heat engine has to exchange heat with two ther-
mal reservoirs. Explain.

6.12
6.13
6.14

6.15
6.16

6.17

6.18

6.19
6.20

6.21

6.22

6.23

What is a PMM2? Why is it impossible?

Give the Clausius’ statement of the second law.
Explain the operation of a cyclic refrigerator plant
with a block diagram.

Define the COP of a refrigerator.

What is a heat pump? How does it differ from a
refrigerator?

Can you use the same plant as a heat pump in
winter and as a refrigerator in summer? Explain.
Show that the COP of a heat pump is greater than
the COP of a refrigerator by unity.

Why is direct heating thermodynamically wasteful?
How can a heat pump upgrade low grade waste
heat?

Establish the equivalence of Kelvin-Planck and
Clausius statements.

What is a reversible process? A reversible process
should not leave any evidence to show that the
process had ever occurred. Explain.

How is a reversible process only a limiting pro-
cess, never to be attained in practice?



6.24
6.25
6.26

6.27

6.28

6.29
6.30

6.31

6.32

6.33

6.34

6.35

6.36
6.37

6.38

6.39

6.1

6.2

All spontaneous processes are irreversible. Explain.
What are the causes of irreversibility of a process?
Show that heat transfer through a finite tempera-
ture difference is irreversible.

Demonstrate, using the second law, that free
expansion is irreversible.

What do you understand by dissipative effects?
When is work said to be dissipated?

Explain perpetual motion of the third kind.
Demonstrate using the second law how friction
makes a process irreversible.

When a rotating wheel is brought to rest by apply-

ing a brake, show that the molecular internal
energy of the system (of the brake and the wheel)

ncreases.

Show that the dissipation of stirring work to inter-
nal energy is irreversible.

Show by second law that the dissipation of electrical
work into internal energy or heat is irreversible.

What is a Carnot cycle? What are the four pro-
cesses which constitute the cycle?

Explain the Carnot heat engine cycle executed
by: (a) a stationary system, and (b) a steady flow
system.

What is a reversed heat engine?

. Show that the efficiency of a reversible engine

operating between two given constant tempera-
tures is the maximum.

Show that the efficiency of éll reversible heat
engines operating between the same temperature
levels is the same.

Show that the efficiency of a reversible engine is
independent of the nature or amount of the work-
ing substance going through the cycle.

An inventor claims to have developed an engine
that takes in 105 MKJ at a temperature of 400
K, rejects 42 MJ at a temperature of 200 K, and
delivers 15 kWh of mechanical work. Would you
advise investing money to put this engine in the
market?

If a refrigerator is used for heating purposes in
winter so that the atmosphere becomes the cold

6.40

6.41

6.42

6.43

6.44

6.45

6.46

6.47

6.48

6.49

6.50

6.51

6.52

6.53

' 105

How does the efficiency of a reversible cycle
depend only on the two temperatures at which
heat is transferred?

Second Law of Thermodynamics

What is the absolute thermodynamic temperature
scale? Why is it called absolute?

How is the absolute scale independent of the
working substance?

How does Q play the role of thermometric prop-
erty in the Kelvin Scale?

Show that a definite zero point exists on the abso-
lute temperature scale but that this point cannot
be reached without a violation of the second
law.

Give the Fowler-Guggenheim statement of the
third law.

Is the third law an extension of the second law? Is
it an independent law of nature? Explain.

How does the efficiency of a reversible engine
vary as the source and sink temperatures are
varied? When does the efficiency become
100%?

For a given T,, show that the COP of a refrigera-
tor increases as T, decreases.

Explain how the Kelvin temperature can be mea-
sured with a gas thermometer.

Establish the equality of ideal gas temperature
and Kelvin temperature.

What do you understand by internal irreversibil-
ity and external irreversibility?

Explain mechanical, thermal and chemical
irreversibilities.

A Carnot engine with a fuel burning device as
source and a heat sink cannot be treated as a revers-
ible plant. Explain.

body and the room to be heated becomes the
hot body, how much heat would be available
for heating for each kW input to the driving
motor? The COP of the refrigerator is 5, and
the electromechanical efficiency of the motor
is 90%. How does this compare with resistance
heating?

Ans. 5.4 kW, 1 kW
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6.3

6.4

6.5

6.6

6.7

Using an engine of 30% thermal efficiency to
drive a refrigerator having a COP of 5, what is the
heat input into the engine for each MJ removed
from the cold body by the refrigerator?
Ans. 666.67 kJ
If this system is used as a heat pump, how many
MJ of heat would be available for heating for each
M]J of heat input to the engine? Ans. 1.8 MJ
An electric storage battery which can exchange
heat only with a constant temperature atmo-
sphere goes through a complete cycle of
two processes. In process 1-2, 2.8 kWh of
electrical work flow into the battery while
732 kJ of heat flow out to the atmosphere. During
process 2—1, 2.4 kWh of work flow out of the
battery. (a) Find the heat transfer in process 2—1.
(b) If the process 1—2 has occurred as above, does
the first law or the second law limit the maximum
possible work of process 2—1? What is the maxi-
mum possible work? (c) If the maximum possible
work were obtained in process 2— 1, what will be
the heat transfer in the process?
Ans. (a) —708 kJ (b) Second law, W, _,
=9348kI(c)Q, _,=0
A household refrigerator is maintained at a tem-
perature of 2°C. Every time the door is opened,
warm material is placed inside, introducing
an average of 420 kJ, but making only a small
change in the temperature of the refrigerator. The
door is opened 20 times a day, and the refrigera-
tor operates at 15% of the ideal COP. The cost of
work is 32 paise per kWh. What is the monthly
bill for this refrigerator? The atmosphere is
at 30°C. Ans. Rs. 15.20

A heat pump working on the Carnot cycle takes in
heat from a reservoir at 5°C and delivers heat to
a reservoir at 60°C. The heat pump is driven by a
reversible heat engine which takes in heat from a
reservoir at 840°C and rejects heat to a reservoir
at 60°C. The reversible heat engine also drives
a machine that absorbs 30 kW. If the heat pump
extracts 17 kJ/s from the 5°C reservoir, determine
(a) the rate of heat supply from the 840°C source,
and (b) the rate of heat rejection to the 60°C sink.

Ans. (a) 47.61 kW; (b) 34.61 kW

A refrigeration plant for a food store operates with
a COP which is 40% of the ideal COP of a Carnot
refrigarator. The store is to be maintained at a tem-

6.8

6.9

6.10

6.12

perature of — 5°C and the heat transfer from the
store to the cycle is at the rate of 5 kW, If heat is
transferred from the cycle to the atmosphere at a
temperature of 25°C, calculate the power required
to drive the plant and the heat discharged to the
atmosphere. Ans. 4.4 kW, 6.4 kW

A heat engine is used to drive a heat pump. The
heat transfers from the heat engine and from the
heat pump are used to heat the water circulating
through the radiators of a building. The efficiency
of the heat engine is 27% and the COP of the heat
pump is 4. Evaluate the ratio of the heat transfer
to the circulating water to the heat transfer to the
heat engine. Ans. 1.81

If 20 kJ are added to a Carnot cycle at a temper-
ature of 100°C and 14.6 kJ are rejected at 0°C,
determine the location of absolute zero on the
Celsius scale. Ans. —270.37°C

Two reversible heat engines 4 and B are arranged
in series, A rejecting heat directly to B. Engine 4
receives 200 kJ at a temperature of 421°C from
a hot source, while engine B is in communica-
tion with a cold sink at a temperature of 4.4°C.
If the work output of 4 is twice that of B, find
(a) the intermediate temperature between 4 and
B, (b) the efficiency of each engine, and (c) the
heat rejected to the cold sink.

Ans. 143.4°C, 40% & 33.5%, 80 kJ

A heat engine operates between the maximum
and minimum temperatures of 671°C and 60°C
respectively, with an efficiency of 50% of the
appropriate Carnot efficiency. It drives a heat
pump which uses river water at 4.4°C to heat a
block of flats in which the temperature is to be
maintained at 21.1°C. Assuming that a tempera-
ture difference of 11.1°C exists between the work-
ing fluid and the river water, on the one hand,
and the required room temperature on the other,
and assuming the heat pump to operate on the
reversed Carnot cycle, but with a COP of 50%
of the ideal COP, find the heat input to the engine
per unit heat output from the heat pump. Why is
direct heating thermodynamically more wasteful?

Ans. 0.79 kJ/kJ heat input
An ice-making plant produces ice at atmospheric
pressure and at 0°C from water at 0°C. The
mean temperature of the cooling water circulat-
ing through the condenser of the refrigerating
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6.14

6.15

6.16

machine is 18°C. Evaluate the minimum elecui-
cal work in kWh required to produce 1 tonne of
ice. (The enthalpy of fusion of ice at atmospheric
pressure is 333.5 kJ/kg). Ans. 6.11 kWh

A reversible engine works between three thermal
reservoirs, A, B and C. The engine absorbs an
equal amount of heat from the thermal reservoirs
A and B kept at temperatures 7, and T} respec-
tively, and rejects heat to the thermal reservoir
C kept at temperature T.. The efficiency of the
engine is « times the efficiency of the reversible
engine, which works between the two reservoirs
A and C. Prove that

T—A= 2a-1D)+2( -« Z""
= @a-D+20-a) 7
A reversible engine operates between tempera-
tures 7, and T (T, > T). The energy rejected
from this engine is received by a second revers-
ible engine at the same temperature 7. The second
engine rejects energy at temperature 7, (7, < T).
Show that (a) temperature 7 is the arithmetic
mean of temperatures T, and 7, if the engines
produce the same amount of work output, and (b)
temperature T is the geometric mean of tempera-
tures 7, and 7, if the engines have the same cycle
efficiencies.

Two Carnot engines 4 and B are connected in
series between two thermal reservoirs maintained
at 1000 K and 100 K respectively. Engine A
receives 1680 kJ of heat from the high-tempera-
ture reservoir and rejects heat to the Carnot engine
B. Engine B takes in heat rejected by engine 4
and rejects heat to the low-temperature reservoir.
If engines 4 and B have equal thermal efficien-

cies, determine (a) the heat rejected by engine B, ’

(b) the temperature at which heat is rejected by
engine A, and (c) the work done during the pro-
cess by engines 4 and B respectively. If engines
A and B deliver equal work, determine (d) the
amount of heat taken in by engine B, and (e) the
efficiencies of engines 4 and B. Ans. (a)
168 kJ, b) 316.2 K, (c) 1148.7, 363.3 kJ, (d) 924
kJ, (e) 45%, 81.8%.

A heat pump is to be used to heat a house in winter
and then reversed to cool the house in summer.
The interior temperature is to be maintained at
20°C. Heat transfer through the walls and roof is
estimated to be 0.525 kJ/s per degree temperature

6.17

6.18

6.19

6.20

6.21
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difference between the inside and outside. (a) If
the outside temperature in winter is 5°C, what
is the minimum power required to drive the heat
pump? (b) If the power output is the same as in
part (a), what is the maximum outer temperature
for which the inside can be maintained at 20°C?

Ans. (a) 403 W, (b) 35°C.

Consider an engine in outer space which operates
on the Carnot cycle. The only way in which heat
can be transferred from the engine is by radiation.
The rate at which heat is radiated is proportional
to the fourth power of the absolute temperature 7,
and to the area of the radiating surface. Show that
for a given power output and a given 7, the area
of the radiator will be a minimum when
T, 3

T, 4
It takes 10 kW to keep the interior of a certain
house at 20°C when the outside temperature is
0°C. This heat flow is usually obtained directly by
burning gas or oil. Calculate the power required
if the 10 kW heat flow were supplied by operat-
ing a reversible heat pump with the house as the
upper reservoir and the outside surroundings as
the lower reservoir. Ans. 0.6826 kW

Prove that the COP of a reversible refrigerator
operating between two given temperatures is the
maximum.

Second Law of Thermodynamics

A house is to be maintained at a temperature of
20°C by means of a heat pump pumping heat
from the atmosphere. Heat losses through the
walls of the house are estimated at 0.65 kW per
unit of temperature difference between the inside
of the house and the atmosphere. (a) If the atmo-
spheric temperature is — 10°C, what is the mini-
mum power required to drive the pump? (b) It is
proposed to use the same heat pump to cool the
house in summer. For the same room temperature,
the same heat loss rate, and the same power input
to the pump, what is the maximum permissible
atmospheric temperature? Ans. 2 kW, 50°C.

A solar-powered heat pump receives heat from
a solar collector at T, rejects heat to the atmo-
sphere at T, and pumps heat from a cold space
at 7. The three heat transfer rates are Q,, O,
and Q_ respectively. Derive an expression for
the minimum ratio Q,/Q_, in terms of the three
temperatures.
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6.22

6.23

6.24

6.25

IfT, =400K, T, = 300K, T, = 200K, Q= 12kW,
what is the minimum Q, ? If the collector captures
0.2 kW/m?, what is the minimum collector area
required? Ans. 24 kW, 120 m?

A heat engine operating between two reservoirs
at 1000 K and 300 K is used to drive a heat pump
which extracts heat from the reservoir at 300 K
at a rate twice that at which the engine rejects
heat to it. If the efficiency of the engine is 40%
of the maximum possible and the COP of the heat
pump is 50% of the maximum possible, what is
the temperature of the reservoir to which the heat
pump rejects heat? What is the rate of heat rejec-
tion from the heat pump if the rate of heat supply
to the engine is S0 kW?  Ans. 3265 K, 86 kW

A reversible power cycle is used to drive a revers-
ible heat pump cycle. The power cycle takes in
O, heat units at T, and rejects Q, at T,. The heat
pump abstracts O, from the sink at T, and dis-
charges Q; at I;. Develop an expression for the
ratio Q,/Q, in terms of the four temperatures.

9, _ (I -T)
. Ql (T, -T,)
Prove that the following propositions are logi-
cally equivalent: (a) A PMM2 is impossible, (b) A
weight sliding at constant velocity down a frictional
inclined plane executes an irreversible process.

Ans

A heat engine receives half of its heat supply at
1000 K and half at 500 K while rejecting heat to

6.26

6.27

6.28

a sink at 300 K. What is the maximum possible
thermal efficiency of this heat engine?

Ans. 0.55%

A heat pump provides 3 x 10* kJ/h to maintain
a dwelling at 23°C on a day when the outside
temperature is 0°C. The power input to the heat
pump is 4 kW. Determine the COP of the heat
pump and compare it with the COP of a reversible
heat pump operating between the reservoirs at the
same two temperatures. Ans. 2.08, 12.87

A reversible power cycle receives energy Q, from
a reservoir at temperature T, and rejects Q, to a
reservoir at temperature T,. The work developed
by the power cycle is used to drive a reversible
heat pump that removes energy Q’, from a res-
ervoir at temperature T/, and rejects energy 0,
to a reservoir at temperature 7). (a) Determine
an expression for the ratio 9/, /Q, in terms of the
four temperatures. (b) What must be the relation-
ship of the temperatures T, T,, T/, and T”,, for
Q’/Q, to exceed a value of unity?
’ I/
Ans. (a) a = M
Ql Tl (Tl - TZ)

When the outside temperature is — 10°C, a resi-
dential heat pump must provide 3.5 x 10°kJ per
day to a dwelling to maintain its temperature at
20°C. If electricity costs Rs. 2.10 per kWh, find
the minimum theoretical operating cost for each
day of operation. Ans. Rs. 208.83

L, 1

-1

> (b) T2/ Tl[



7.1 q INTRODUCTION

The first law of thermodynamics was stated in terms of cycles first and it was shown that the cyclic integral
of heat is equal to the cyclic integral of work. When the first law was applied for thermodynamic processes,
the existence of a property, the internal energy, was found. Similarly, the second law was also first stated in
terms of cycles executed by systems. When applied to processes, the second law also leads to the definition
of a new property, known as entropy. If the first law is said to be the law of internal energy, then second law
may be stated to be the law of entropy. In fact, thermodynamics is the study of three E's, namely, energy,

equilibrium and entropy.

7.2 79 TWO REVERSIBLE ADIABATIC
PATHS CANNOT INTERSECT
EACH OTHER

Let it be assumed that two reversible adiabatics AC
and BC intersect each other at point C (Fig. 7.1). Let
a reversible isotherm 4B be drawn in such a way that
it intersects the reversible adiabatics at 4 and B. The
three reversible processes AB, BC, and CA together
constitute a reversible cycle, and the area included
represents the net work output in a cycle. But such
a cycle is impossible, since net work is being pro-
duced in a cycle by a heat engine by exchanging
heat with a single reservoir in the process 4B, which
violates the Kelvin-Planck statement of the second
law. Therefore, the assumption of the intersection
of the reversible adiabatics is wrong. Through one
point, there can pass only one reversible adiabatic.

Since two constant property lines can never inter-
sect each other, it is inferred that a reversible adia-
batic path must represent some property, which is yet
to be identified.

73 CLAUSIUS’ THEOREM

1
Let a system be taken from an equilibrium state
i to another equilibrium state f by following the

Rev.
isotherm

Rev.
adiabatics

; Assumption of two reversible adiabatics
intersecting each other

Rev. adiabatics

I

Rev.
isotherm

—_—

Reversible path substituted by two reversible
adiabatics and a reversible isotherm
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reversible path i—f(Fig. 7.2). Let a reversible adiabatic i—a be drawn through i and another reversible adiabatic
b—f be drawn through f. Then a reversible isotherm a—b is drawn in such a way that the area under i~a—-b-fis
equal to the area under i—f. Applying the first law for

Process i—f

O =U-U + Wy (7.1)
Process i—a—-b—f

Qiapt = Up= U+ Wi (7.2)
Since We= Woe

.. From Eqgs (7.1) and (7.2)

Qi = Qipr = Qia T Qap + Qur
Since Q.,=0and Q=0

Q= O

Heat transferred in the process i—fis equal to the
heat transferred in the isothermal process a—b.

Thus any reversible path may be substituted
by a reversible zigzag path, between the same T,
end states, consisting of a reversible adiabatic
followed by a reversible isotherm and then by
a reversible adiabatic, such that the heat trans-
ferred during the isothermal process is the
same as that transferred during the original
process.

Let a smooth closed curve representing a
reversible cycle (Fig. 7.3) be considered. Let
the closed cycle be divided into a large number
of strips by means of reversible adiabftics. Each @R 4 reversivle cycle split into a large number
strip may be closed at the top and bottom by of carnot cycles
reversible isotherms. The original closed cycle
is thus replaced by a zigzag closed path consisting of alternate adiabatic and isothermal processes, such
that the heat transferred during all the isothermal processes is equal to the heat transferred in the original
cycle. Thus the original cycle is replaced by a large number of Carnot cycles. If the adiabatics are close to
one another and the number of Carnot cycles is large, the saw-toothed zigzag line will coincide with the
original cycle.

For the elemental cycle abed d Q, heat is absorbed reversibly at 7}, and ¢ Q, heat is rejected reversibly at 7,

¢, g,
Tl TZ

Rev. adiabatics

Rev. isotherms

—p

Original reversible
circle

If heat supplied is taken as positive and heat rejected as negative

40, , 40,
Tl TZ

=0
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Similarly, for the elemental cycle efgh

d d
0,  ¢0, _
T, T,

If similar equations are written for all the elemental Carnot cycles, then for the whole original cycle

490, A 49, A 40, 0., _,
T, T, T, T,
Y
=0 7.3
or $= (7.3)

R

The cyclic integral of ¢ Q/T for a reversible cycle is equal to zero. This is known as Clausius’ theorem. The
letter R emphasizes the fact that the equation is valid only for a reversible cycle.

7.4 § THE PROPERTY OF ENTROPY

Let a system be taken from an initial equilibrium state

i to a final equilibrium state /by following the reversible o
path R, (Fig. 7.4). The system is brought back from R
fto i by following another reversible path R,. Then the
two paths R, and R, together constitute a reversible cycle. A,
From Clausius’ theorem

a0
Ef‘T—:O —

RR,

S 1.0 reversible paths R, and R, between
The above integral may be replaced as the sum of two two equilibrium states i and f

integrals, one for path R, and the other for path R,

f i
R R,

Since R, is a reversible path

[

Since R, and R, represent any two reversible paths, f (;Q is independent of the reversible path connect-
i

R
ing i and f. Therefore, there exists a property of a system whose value at the final state f minus its value at the
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f
initial state i is equal to f :‘Tg This property is called entropy, and is denoted by S. If S, is the entropy at the

R
initial state 7, and S, is the entropy at the final state £, then
f
d0 .
if =55, (1.4)
R
When the two equilibrium states are infinitesimally near

99r g5 (1.5)
T

where dS is an exact differential because S is a point function and a property. The subscript R in dQ indicates
that heat d Q is transferred reversibly. .

The word ‘entropy” was first used by Clausius, taken from the Greek word ‘tropee’ meaning ‘transformation’.
It is an extensive property, and has the unit J/K. The specific entropy

s=5 JxgK
m
If the system is taken from an initial equi-
librium state i to a final equilibrium state by Rev. path which
an irreversible path, since entropy is a point - i R replaces the
or state function, and the entrog))/’ change is f\’_\\ irrev. path
independent of the path followed, the non-
reversible path is to be replaced by a reversible | T
path to integrate for the evaluation of entropy I' ~ Actual !
change in the irreversible process (Fig. 7.5). | Irev. path s |
1 |
(7.6) S 55

Integration can be done only on a reversible path

f
dQ rev
S-S, f - (AS)
Integration can be performed only on a
reversible path.

irrev path

74.1 Temperature-Entropy Plot

The infinitesimal change in entropy dS due to reversible heat transfer ¢ Q at temperature T is

ds = dQ rev
T
If dQ ., =0,i.e., the process is reversible and adiabatic
dS=0
and S = constant

A reversible adiabatic process is, therefore, an isentropic process.
Now dQ,., =T1ds

or O = ]TdS



The system is taken from i to freversibly (Fig. 7.6). The area under the curve
transferred in the process.

- Area under a reversible path on the T-s

Entropy

—_—T

Quov = TdS
NANAN
s ds—+ l—s

N

 ——— ]

plot represents heat transfer

For reversible isothermal heat transfer (Fig. 7.7), T = constant.

f
0o, =T [ dS=T(5-S5)

For a reversible adiabatic process, dS = 0, S = C (Fig. 7.8).

The Carnot cycle comprising two reversible isotherms and two reversible adiabatics forms a rectangle
in the TS plane (Fig. 7.9). Process 4—1 represents reversible isothermal heat addition Q, to the system at
T, from an external source, process 1-2 is the reversible adiabatic expansion of the system producing W
amount of work, process 2-3 is the reversible isothermal heat rejection from the system to an external sink
at T,, and process 3—4 represents reversible adiabatic compression of the system consuming W_amount of
work. Area 1 2 3 4 represents the net work output per cycle and the area under 4-1 indicates the quantity of

Sy

heat added to the system Q,.
n _QI“QZ _~T1 (SI_S4)_T2 (S2—S3)
Carnot Q] T[ (S] —S4)
=T1—T2 _1_2
T, T,
and We=0,—-0,=(T,-T)(S,~ Sy
' Q
. 4 b P
i - l
~ .
( — W —— W
3 | -——T
f la, 2 °
—s S

Reversible adiabatic is isentropic - Carnot cycle

' 113

- Reversible isothermal heat transfer

f
f TdS is equal to the heat
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7.5 I‘ THE INEQUALITY OF CLAUSIUS

Let us consider a cycle ABCD (Fig. 7.10). Let 4B

be a general process, either reversible or irrevers-

ible, while the other processes in the cycle are
reversible. Let the cycle be divided into a number

of elementary cycles, as shown. For one of these ~
elementary cycles

¢,

a0

n=1-

Rev. adiabatics

where dQ is the heat supplied at 7, and ¢ 0, the T,
heat rejected at T,.
Now, the efflcnency of a general cycle will be
equal to or less than the efficiency of a reversible
cycle.
99,
a0
a0, ‘
or —_—=>
do d J
& di
or 0 J
| 0, ~| do, |,
di T
Since [ —L] =—
dQ 2 rev T2
4 _T
@, T,
or _dg < d_QZ_ , for any process 4B, reversible or irreversible.
r T,
For a reversible process
ds = 90 ., _ 99> (1.7)
T T,
Hence, for any process 4B
40 <y (7.8)
T
Then for any cycle
do
jf T S 35 ds
Since entropy is a property and the cyclic integral of any property is zero
f‘f_Q <0 (7.9)

T
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This equation is known as the inequality of Clausius. It provides the criterion of the reversibility of a cycle.
0] . .
If § — =0, the cycle is reversible,
$7 y
§ dQ .. . .
- < 0, the cycle is irreversible and possible

§ —(—r]—1Q— > 0, the cycle is impossible, since it violates the second law.

7.6 g ENTROPY CHANGE IN AN IRREVERSIBLE PROCESS

For any process undergone by a system, we have from Eq. (7.8)

49 <4
T
or ds > 49 (7.10)
T
This is further clarified if we consider the cycles
as shown in Fig. 7.11, where 4 and B are reversible
processes and C is an irreversible process. For the
reversible cycle consisting of 4 and B
~
aQ :fz dQ +fl @ _,
fR T Al T B 2 T
2 dQ 1 dQ
or f - =—f2 - (7.11)
A B — S

For the irreversible cycle consisting of 4 and C, by Entropy change in an irreversible process

the inequality of Clausius,
d¢Q _ (292  '4Q
j;T_f] T +f2 <0 (7.12)
A C

From Eqgs (7.11) and (7.12),

2
<

—f]dT—Qwa;—dTi<0
C

B
1 dQ 1 dQ
/. - > - (1.13)
B c
Since the path B is reversible,
1IN (0) !
2 T 2{2 ds (7.14)

B
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Since entropy is a property, entropy changes for the paths B and C would be the same. Therefore,
1 1
fz dS=f2 ds (7.15)
B c
From Eqs (7.13) to (7.15),
1 1 d—Q
f , 45> f 2 T
C c
Thus, for any irreversible process,

s> 49
T
whereas for a reversible process

ds = aQ rev
T
Therefore, for the general case, we can write

ds > 49
T

or S-S, zflz iTQ_ (7.16)

The equality sign holds good for a reversible process and the inequality sign for an irreversible process.

7.7 ‘ ENTROPY PRINCIPLE

For any infinitesimal process undergone by a system, we have from Eq. (7.10) for the total mass

ds> 40
T
For an isolated system which does not undergo any energy interaction with the surroundings, ¢ Q = 0.
Therefore, for an isolated system

das, >0 (7.17)
For a reversible process,
das, =0
or § = constant
For an irreversible process
s, >0

It is thus proved that the entropy of an isolated system can never decrease. It always increases and remains
constant only when the process is reversible. This is known as the principle
of increase of entropy, or simply the entropy principle. It is the quantitative System
general statement of second law from the macroscopic viewpoint.

An isolated system can always be formed by including any system

and its surroundings within a single boundary (Fig. 7.12). Sometimes the ‘v
original system which is then only a part of the isolated system is called a
‘subsystem’.

The system and the surroundings together (the universe or the isolated Surroundings

system) include everything which is affected by the process. For all possible isolated (composite) system

processes that a system in the given surroundings can undergo ” Isolated system



dSum'v Z 0
or dSsys +dS, >0
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(7.18)

Entropy may decrease locally at some region within the isolated system, but it must be compensated by a
greater increase of entropy somewhere within the system so that the net effect of an irreversible process is an
entropy increase of the whole system. The entropy increase of an isolated system is a measure of the extent

of irreversibility of the process undergone by the system.

Rudolf Clausius summarized the first and second laws of thermodynamics in the following words:

(a) Die Energie der Welt ist Costant.

(b) Die Entropie der Welt strebt einem Maximum zu.

[(a) The energy of the world (universe) is constant.

(b) The entropy of the world tends towards a
maximum.]

The entropy of an isolated system always increases
and becomes a maximum at the state of equilibrium.
If the entropy of an isola's:d system varies with some
parameter x, then there is a certain value of x, which

maximizes the entropy

when s = ] and represents
dx

the equilibrium state (Fig. 7.13). The system is then said
to exist at the peak of the entropy hill, and dS = 0.

\ Smax

i/ :
r :
o) H
3 .
5| /7 :

& | Equilibrium
o '

EQ :/ state

~ '

Xe

—_— X

quilibrium state of an isolated system

When the system is at equilibrium, any conceivable change in entropy would be zero.

7.8 ‘ APPLICATIONS OF ENTROPY PRINCIPLE

The principle of increase of entropy is one of the most important laws of physical science. It is the quantita-
tive statement of the second law of thermodynamics. Every irreversible process is accompanied by entropy
increase of the universe, and this entropy increase quantifies the extent of irreversibility of the process. The
higher the entropy increase of the universe, the higher will be the irreversibility of the process. A few applica-
tions of the entropy principle are illustrated in the following.

7.8.1 Transfer of Heat through a Finite Temperature Difference

Let Q be the rate of heat transfer from reservoir 4 at
T, to reservoir B at T, T, > T, (Fig. 7.14).

For reservoir 4, AS, = — Q/T,. It is negative
because heat Q flows out of the reservoir. For res-
ervoir B, AS, = + Q/T,. 1t is positive because heat
flows into the reservoir. The rod connecting the reser-
voirs suffers no entropy change because, once in the
steady state, its coordinates do not change.

Therefore, for the isolated system comprising the

System boundary
/ﬁ Q—os e,

Reservoir A Reservoir B

Heat transfer through a finite temperature
difference

reservoirs and the rod, and since entropy is an additive property

S=5,+S,

AS,,, = AS, + AS,
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T, -T
or ASuniV:——Q—+—Q—=Q-l—2-
T, 2 T,

Since T, > T,, AS . is positive, and the process is irreversible and possible. If T, = T,, AS . is zero, and
the process is reversible. If 7', < T,, AS_ . is negative and the process is impossible.

7.8.2 Mixing of Two Fluids

Partition
Subsystem 1 having a fluid of mass m,, spe- UL, Adiabatic
cific heat c,, and temperature ¢,, and subsystem o FUETY I S RE I -0 enclosure
2 consisting of a fluid of mass m,, specific heat .-' Mmoo, my .
¢,. and temperature £,, comprise a composite R RS . -l
system in an adiabatic enclosure (Fig. 7.15). - T g I 4
When the partition is removed, the two fluids / . 0o v f >t
mix together, and at equilibrium let . be the /IR h o by
final temperature, and ¢, < t; < 7. Since energy .t R . AN -
interaction is exclusively confined to the two WIT7777777 ////////////////%
fluids, the system being isolated Subsystem 1 Subsystem 2
SR \1ixing of two fluids

mc, (t, — 1) = myc, (t,— 1)

M Cyly - macyt,

I
mcy+m,c,

Entropy change for the fluid in subsystem 1

T
ASI =fT' 490, =fT’ mlcld_T_ =mc, lIl'Ti
T, T T T 1
te + 273
=mec, In————
My, +273
This will be negative, since T, > T.
Entropy change for the fluid in subsystem 2
T, myc,dT T, te +273
AS,= "2 =me,In=E =myc, Int—
2 fT T e T T )
This will be positive, since T, < T
AS

univ = ASl + ASZ
- I T_f In=£
=mC, nT1 + m,c, nT2
AS ., will be positive definite, and the mixing process is irreversible.
Although the mixing process is irreversible, to evaluate the entropy change for the subsystems, the
irreversible path was replaced by a reversible path on which the integration was performed.
ifm =my,=mandc,=c,=c.
T?
AS, ., =mc ln—' —
1742
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meT,+my,T, T,+T,

and T,
mc, +my, 2
T, +1,)2

AS, ., =2mcln T
1742

This is always positive, since the arithmetic
mean of any two numbers is always greater than
their geometric mean. This can also be proved geo-
metrically. Let a semi-circle be drawn with (T, + 7,)
as diameter (Fig. 7.16).

Here, AB = T,, BC =T, and OF = (T, + T)2.
It is known that (DB)* = AB - BC = 1'T,.

DB= [T T,
Now, OE > DB
T,+T,
2

7.8.3 Maximum Work Obtainable from Two Finite
Bodies at Temperatures T, and T,

m

o___.__...__.___

B C
T : T,—*

Geometrical proof to show that g.m. < a.m.

=TT,

Let us consider two identical finite bodies of constant heat capacity at temperatures 7, and T, respectively, T,
being higher than T,,. If the two bodies are merely brought together into thermal contact, delivering no work,
the final temperature T} reached would be the maximum
T, +T,

2

T.=

If a heat engine is operated between the two bodies acting as thermal energy reservoirs (Fig. 7.17), part of
the heat withdrawn from body 1 is converted to work ¥ by the heat engine, and the remainder is rejected to
body 2. The lowest attainable final temperature T corresponds to the delivery of the largest possible amount
of work, and is associated with a reversible process.

As work is delivered by the heat engine, the temperature of body

1 will be decreasing and that of body 2 will be increasing. When Body 1
both the bodies attain the final temperature T;, the heat engine T, —T;
will stop operating. Lct the bodies remain at constant pressure and

undergo no change of phase. Qq

Total heat withdrawn from body 1
0,=C,(T,-T) HE. _<@—>wzo,_o2

where C_ is the heat capacity of the two bodies at constant pressure.

Total heat rejected to body 2 Q,
Qz = Cp (Tf - TZ) Body 2
. Amount of total work delivered by the heat engine T, —T;
W=0,-0 ¢ Maximum work obtainable

=C, (T, + T,~2T) (7.19) " from two finite bodies
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For given values of Cp’ T)andT, »» the magnitude of work W depends on T, ¢ Work obtainable will be maxi-
mum when 7, ¢ is minimum,
Now, for body 1, entropy change AS) is given by

T . dr _
AS,szI G5 =G
For body 2, entropy change AS, would be

I
Tl

(" ¢ dT _ I
as,= . GG =Gl

Since the working fluid operating in the heat engine cycle does not undergo any entropy change, AS of the
working fluid in heat engine = ¢ dS = 0.
Applying the entropy principle
AS,., >0
I

G n T,

Tf
+cpln;2— >0

TZ
Clhh—t_ >0 (7.20)
P ITZ

From Eq. (7.20), for T, ¢ to be a minimum

2
C In d;

=0
PTT,

Since Cp =0,
T2

In =0=1In1l

142
T;= T, T, (7.21)
For W to be a maximum, T, will be /TIT2 . From Eq. (7.19)

Wow = G (T, + T,-2,[1\T, ) = G, ({1, - [T, )2

The final temperatures of the two bodies, initially at 7, and T,,, can range from (T 1 + T,)/2 with no delivery
of work to /7', T, with maximum delivery of work.

7.8.4 Maximum Work Obtainable from a Finite Body and a TER

Let one of the bodies considered in the previous section be a thermal energy reservoir. The finite body has
a thermal capacity C, and is at temperature T and the TER is at temperature 7, such that T > T,. Let a
heat engine operate between the two (Fig. 7.18). As heat is withdrawn from the body, its temperature
decreases. The temperature of the TER would, however, remain unchanged at T, o- The engine would stop
working, when the temperature of the body reaches 7). During that period, the amount of work delivered
is W, and the heat rejected to the TER is (Q—W). Then
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ASy= ¢ dS=0 [ BT |
o-W

Q
AS e =
TER TO
TO Q —-W HE 4+— W
AS=C,In T + T, ~
By the entropy principle,
AS,., 20 | T$R |
T, o-w 0
G n T + 20 Maximum work obtainable when
T 0 one of the bodies is a TER
PoT T,
or W0 ccnlo
I, — % r
T,
or W<Q+T,Cln —
T
T,
Woax =@ + T,CIn —
T
or, Wi = C,|(T —~To)~ Ty In .17:_ (1.22)
0

7.8.5 Processes Exhibiting External Mechanical Irreversibility

(i) Isothermal Dissipation of Work Let us consider the isothermal dissipation of work through a system
into the internal energy of a reservoir, as in the flow of an electric current / through a resistor in contact with
a reservoir (Fig. 7.19). At steady state, the internal energy
of the resistor and hence its temperature is constant. So, by
first law

W=0

The flow of current represents work transfer. At steady
state the work is dissipated isothermally into heat transfer
to the surroundings. Since the surroundings absorb Q units

of heat at temperature 7, - External mechanical irreversibility
w
As, =2 =%
r T
At steady state, AS,,=0
4
AS‘miv = AS’ys + ASsm = ? (7.23)

The irreversible process is thus accompanied by an entropy increase of the universe.
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(ii) Adiabatic Dissipation of Work Let W be the stirring work supplied to a viscous thermally insulated
liquid, which is dissipated adibatically into internal energy increase of the liquid, the temperature of which
increases from T; to T (Fig. 7.20). Since there is no flow of heat to or from the surroundings,

AS,,. =0
To calculate the entropy change of the system, the original irreversible path (dotted line) must be replaced
by a reversible one between the same end states, i and f. Let us replace the irreversible performance of work

by a reversible isobaric flow of heat from a series of reservoirs ranging from T, to T, to cause the same change
in the state of the system. The entropy change of the system will be

f f
_rd0 _ [Gdr_ T
ASsys—f T = f —Cplnf
i
R

)T T,

R

...............

H

............. %
\— Insulation — S

(a) (b)
.= Adiabatic dissipation of work

where Cp is the heat capacity of the liquid.
AS

univ

T
=AS  +AS, = C,In T (7.24)
which is positive.

7.9 q ENTROPY TRANSFER MECHANISMS

Entropy can be fransferred to or from a system in two forms: heat transfer and mass Sflow. In contrast, energy
is transferred by work also. Entropy transfer is recognized at the system boundary as entropy crosses the
boundary, and it represents the entropy gained or lost by a system during a process. The only form of entropy
interaction associated with a fixed mass or closed system is heat transfer, and thus the entropy transfer for an
adiabatic closed system is zero. It is being explained below in more detail:

(a) Heat Transfer Since dS = 40 . , when heat is added to a system, & Q is positive, and the entropy of the

T
system increases. When heat is removed from the system, d¢'Q is negative, and the entropy of the system decreases.
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Heat transferred to the system of fixed mass increases the internal energy of the system, as a result of
which the molecules (of a gas) move with higher kinetic energy and collide more frequently, and so the disor-
der in the system increases. Heat is thus regarded as dis- ‘
organized or disordered energy transfer which increases
molecular chaos (see Sec. 7.16). If heat O flows revers-
ibly from the system to the surroundings at T, (Fig. 7.21),
the entropy increase of the surroundings is

[ Entropy transfer along with heat flow

The temperature of the boundary where heat transfer occurs is the constant temperature T,,. It may be said that
the system has lost entropy to the surroundings. Alternatively, one may state that the surroundings have gained
entropy from the system. Therefore, there is entropy transfer from the system to the surroundings along with
heat flow. In other words, since the heat inflow increases the molecular disorder, there is flow or disorder along
with heat. The sign of entropy transfer is the same as the sign of heat transfer: positive, if into the system, and
negative, if out of the system.

On the other hand, there is no entropy trans- Flywheel
fer associated with work. In Fig. 7.22, the system [
delivers work to a flywheel, where energy is stored —f
in a fully recoverable form. The flywheel mol-
ecules are simply put into rotation around the axis w
in a perfectly organized manner, and there is no
dissipation and hence no entropy increase of the
flywheel. The same can be said about work trans-
fer in the compression of a spring or in the raising
of a weight by a certain height. There is thus no
entropy transfer along with work. If work is dissi-
pated adiabatically into internal energy increase of the system (Subsection 7.9.5), there is an entropy increase
in the system, but there is as such no entropy transfer to it.

Work is thus entropy-free, and no entropy is transferred with work. Energy is transferred with both heat and
work, whereas entropy is transferred only with heat. The first law of thermodynamics makes no distinction
between heat transfer and work. It considers them as equals. The distinction between heat transfer and work
is brought about by the second law: an energy interaction which is accompanied by entropy transfer is heat
transfer, and an energy interaction which is not accompanied by entropy transfer is work. Thus, only energy is
exchanged during work interaction, whereas both energy and entropy are exchanged during heat transfer.

B9 No entropy transfer along with work transfer

(b) Mass Flow Mass contains entropy as well as energy, and the entropy and energy of a system are propor-
tional to the mass. When the mass of a system is doubled, so are the entropy and energy of the system. Both
entropy and energy are carried into or out of a system by streams of matter, and the rates of entropy and energy
transport into or out of a system are proportional to the mass flow rate. Closed systems do not involve any
mass flow and thus any entropy transport. When an amount of mass m enters or leaves a system, an entropy of
amount ms, s being the specific entropy, accompanies it. Therefore, the entropy of a system increases by ms
when the mass of amount m enters it, and decreases by the same amount when it leaves it at the same state.



124 ' Basic and Applied Thermodynamics

7.10 ‘ ENTROPY GENERATION IN A CLOSED SYSTEM

The entropy of any closed system can increase in two ways:
(a) by heat interaction in which there is entropy transfer
(b) internal irreversibilities or dissipative effects in which work (or K.E.) is dissipated into internal
energy increase.

If & Q is the infinitesimal amount of heat transferred to the system through its boundary at temperature 7,
the same as that of the surroundings, the entropy increase dS of the system can be expressed as

dS=dS+dS
, - _“TQ +dS (7.25)

where d,S is the entropy increase due to external heat interaction and d.S is the entropy increase due to inter-
nal irreversibility. From Eq. (7.25),
as> 42
T
. ds>0 (7.26)
The entropy increase due to internal irreversibility is also called entropy production or entropy generation, Seen
In other words, the entropy change of a system during a process is greater than the entropy transfer (dQ/T)
by an amount equal to the entropy generated during the process within the system (d.S), so that the entropy

balance gives:
Entropy change = Entropy transfer + Entropy generation

ASsytcm = Astmnsfer + Asgen
which is a verbal statement of Eq. (7.25) and illustrated in Fig. 7.23.

This portion of the boundary
is at temperature T,

[
Gas or liquid
Reservoir Q
aT., ~ PN~ Entropy change of system
ﬁ = entropy transfer (with Q)
+ Entropy generation

(by W, due to dissipation)

Entropy

- Iustration of the entropy transfer and entropy production concepts
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It may so happen that in a process (e.g. the expansion of a hot fluid in a turbine) the entropy decrease of

aQ

the system due to heat loss to the surroundings (— f T] is equal to the entropy increase of the system due

to internal irreversibilities such as friction, etc. ( f d iS) , in which case the entropy of the system before and

after the process will remain the same ( f ds = 0) . Therefore, an isentropic process need not be adiabatic or
reversible.

But if the isentropic process is reversible, it must be adiabatic. Also, if the isentropic process is adiabatic,
it cannot but be reversible. An adiabatic process need not be isentropic, since entropy can also increase due
to friction etc. But if the process is adiabatic and reversible, it must be isentropic.

For an infinitesimal reversible process by a closed system,

&0y = U, + pdV

If the process is irreversible, a0, =4aU +4w
Since U is a property, dU; = dy;
S a0, —pdV=4Q,-aW
or 49 =[‘£] R —dW (7.27)
T ), (T) T

The difference (pdV — dW) indicates the work that is lost due to irreversibility, and is called the lost work
d& (LW), which approaches zero as the process approaches reversibility as a limit. Equation (7.27) can be
expressed in the form
ds=dS+dS
Thus the entropy of a closed system increases due to heat addition (d,S) and internal dissipation (d,S).
In any process executed by a system, energy is always conserved, but entropy is produced internally. For
any process between equilibrium states 1 and 2 (Fig. 7.24), the first law can be written as

Tao - fow s s,
1

Boundary

Surroundings

Energy Energy
transfer change
or Qu,=E-E+W,
T aw
By the second law, (Boundary (Heat transfer) (Work transfer)
) temperature)
1Y dQ
Sz -8 1 2 f T = (Entropy transfer)
1

Schematic of a closed system interacting

It is only the transfer of energy as heat which is with its surroundings

accompanied by entropy transfer, both of which occur at
the boundary where the temperature is 7. Work interaction is not accompamed by any entropy transfer. The

entropy change of the system (S, — §) exceeds the entropy transfer f dQ . The difference is produced inter-

nally due to irreversibility. The amount of entropy generation Sgen is glven by
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2
a0
S,-8,— f 7 = Sem (7.28)
1
Entropy Entropy Entropy
change transfer production
-~
Sgen 2 0 I
The second law states that, in general, any thermody-

namic process is accompanied by entropy generation.
Process 1-2, which does not generate any entropy
(Sgen = 0), is a reversible process (Fig. 7.25). Paths

for which S, > 0 are considered irreversible. Like — 5
heat transfer and work transfer during the process .
1-2, the entropy generation also depends on the @RI =r7opy generation depends on the path

path the system follows. Seen is, therefore, not a thermodynamic property and & Seen is an inexact differential,
_ although (S, — S,) depends only on the end states. In the differential form, Eq. (7 .28) can be written as

dQ
e ngen = —-T (729)

The amount of entropy generation quantities the intrinsic irreversibility of the process. If the path 4
causes more entropy generation than path B (Fig. 7.25), i.e.

Spedn > Sl

the path 4 is more irreversible than path B and involves more ‘lost work’.
If heat transfer occurs at several locations on the boundary of a system, the entropy transfer term can be
expressed as a sum, so Eq. (7.28) takes the form

0.
S,-8, = Z —T—’ + Sgen (7.30)
it
where Qj / T, is the amount of entropy transferred through the portion of the boundary at temperature 7.
On a time rate basis, the entropy balance can be written as

ds Qj .
_ = — + 7.31
= XJ: 7, Sem (7.31)

where dS/dr is the rate of change of entropy of the system, Q j/T; is the rate of entropy transfer through the
portion of the boundary whose instantaneous temperature is 7, and S gen 1S the rate of entropy generation due
to irreversibilites within the system.

7.11 ‘ ENTROPY GENERATION IN AN OPEN SYSTEM

In an open system, there is transfer of three quantities: mass, energy and entropy. The control surface can have
one or more openings for mass transfer (Fig. 7.26). It is rigid, and there is shaft work transfer across it.
The continuity equation gives
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\ Surroundings

Control
volume p——

CsS.

Surface
temperature, T
(Shaft work
? (Heat transfer transfer rate)

rate)

(Entropy transfer ———
rate)

: Schematic of an open system and its interaction with surroundings

, . oM
Somy =Y me = —— (7.32)
; . or
net mass rate of mass
transfer rate accumulation
in the CV
The energy equation gives
. v? . v? . . _OE
Som |ht—+8Z| - me|h+—+gZ| +Q—Wy=—— (7.33)
: 2 LS 2 . or
net rate of energy rate of energy
transfer accumulation in the CV
The second law inequality or the entropy principle gives
: . Q_as
m.s. — m.s,+=<— 7.34
Dorhsi= D mese + T S o0 (7.34)
net rate of entropy rate of increase of
transfer entropy of the CV

Here Q represents the rate of heat transfer at the location of the boundary where the instantaneous tem-
perature is 7. The ratio Q /T accounts for the entropy transfer along with heat. The terms m;s; and m_s,
account, respectively, for rates of entropy transfer into and out of the CV accompanying mass flow. The rate
of entropy increase of the control volume exceeds, or is equal to, the net rate of entropy transfer into it. The
difference is the entropy generated within the control volume due to irreversibility. Hence, the rate of entropy
generation is given by

Sgen = gﬁ—zmisi +3 s, '——(Tz- (7.35)
T -
By the second law, ' ¢

5., 20

gen
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If the process is reversible, 'S;gen = 0. For an irreversible process, .§8m > 0.
. The magnitude of jgm quantifies the irreversibility of the process. If systems 4 and B operate so that (jgm ), >
(Sgen )B it can be said that the system A operates more irreversibly than system B. The unit of S:gm is W/K.

At steady state, the continuity equation gives
dom=3m, (1.36)
the energy equation becomes l )
0=Q W+,
i

and the entropy equation reduces to

VZ
h+=—+gZ (7.37)

2
h+—‘—;—-+gZ]

=2,
e

1 €

0= %+Zmisi ~> s, +S (7:38)

These equations often must be solved simultaneously, together with appropriate property relations.

Mass and energy are conserved quantities, but entropy is not generally conserved. The rate at which
entropy is transferred out must exceed the rate at which entropy enters the CV, the difference being the rate
of entropy generated within the CV owing to irreversibilities.

For one-inlet and one-exit control volumes, the entropy equation becomes

0=%+rh(sl—s2)+$'gm

1{0] Seen
—5 = — X428 7.39
575 T + " (7.39)
7.12 FIRST AND SECOND LAWS COMBINED
By the second law
a9, =Tds
and by the first law, for a closed non-flow system,
dQ=dU + pdv
TdS = dU + pdV (7.40)
Again, the enthalpy
H=U+pV
dH = dU + pdV + Vdp
= TdS + Vdp
TdS = dH - Vdp (7.41)

Equations (7.40) and (7.41) are the thermodynamic equations relating the properties of the system.
Let us now examine the following equations as obtained from the first and second laws:

(@) &Q=dE + & W—This equation holds good for any process, reversible or irreversible, and for any
system.
() &Q=dU+ & W—This equation holds good for any process undergone by a closed stationary system.
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(c) & Q = dU + pdV—This equation holds good for a closed system when only pdV-work is present.
This is true only for a reversible (quasi-static) process.

(d) @ Q = TdS—This equation is true only for a reversible process.

(e) TdS = dU + pdV—This equation holds good for any process reversible or irreversible, undergone by
a closed system, since it is a relation among properties which are independent of the path.

(f) TdS = dH - Vdp—This equation also relates only the properties of system. There is no path function
term in the equation. Hence the equation holds good for any process.

The use of the term ‘irreversible process’ is doubtful, since no irreversible path or process can be plotted on
thermodynamic coordinates. It is more logical to state that ‘the change of state is irreversible’ rather than say
‘it is an irreversible process’. A natural process which is inherently irreversible is indicated by a dotted line
connecting the initial and final states, both of which are in equilibrium. The dotted line has no other meaning,
since it can be drawn in any way. To determine the entropy change for a real process, a known reversible path
is made to connect the two end states, and integration is performed on this path using either equation (e) or
equation (f), as given above. Therefore, the entropy change of a system between two identifiable equilibrium
states is the same whether the intervening process is reversible or the change of state is irreversible.

7.13 ‘ REVERSIBLE ADIABATIC WORK IN A STEADY FLOW SYSTEM

In the differential form, the steady flow energy equation per unit mass is given by Eq. (5.11),
dQ9=dh+VdV +gdZ + aW,
For z reversible process, & Q = Tds

. Tds = dh + VdV + gdZ + & W, (7.42)
Using the property relation, Eq. (7.41), per unit mass,
Tds = dh—vdp
in Eq. (7.42), we have
—~vdp=VdV +gdZ + & W, (7.43)
On integration ,
2
-fvdp=AXz—+Wx (7.44)
1
If the changes in K.E. and PE. are neglected, Eq. (7.44) reduces to
2
W =-| vdp (7.45)
|
If & Q = 0, implying ds = 0, the property relation gives
dh = vdp
2
or hy—h, = [vip (7.46)
1

From Egs (7.45) and (7.46),

W=h—hy=— [ vip (7.47)
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2 ,
The integral — f vdp represents an area on the
1
p—v plane (Fig. 7.27). To make the integration, one
must have a relation between p and v such as pv =
constant. 2

— | |-—dp

=areal2abl

Equation (7.47) holds good for a steady flow work-pro-
ducing machine like an engine or turbine as well as
for a work-absorbing machine like a pump or a com-
pressor, when the fluid undergoes reversible adiabatic
expansion or compression.

It may be noted that for a closed stationary system like
a gas confined in a piston-cylinder machine (Fig. 7.28a), the reversible work done would be

b Reversible steady flow work interaction

2
W, ,= fpdV:Area 12c¢d 1

1
The reversible work done by a steady flow system (Fig. 7.28b) would be
2
_2=-f vdp = Area 12 ab 1
1

W,

Closed system

r—-—-—-—-=

p

d — v c —_—

(@ (b)
w Reversible work transfer in (a) A closed system and (b) A steady flow systemn
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7.14 !‘ ENTROPY AND DIRECTION: THE SECOND LAW—A DIRECTIONAL
- LAW OF NATURE

Since the entropy of an isolated system can never decrease, it follows that only those processes are possible
in nature which would give an entropy increase for the system and the surroundings together (the universe).
All spontaneous processes in nature occur only in one direction from a higher to a lower potential, and these
are accompanied by an entropy increase of the universe. When the potential gradient is infinitesimal (or zero
in the limit), the entropy change of the universe is zero, and the process is reversible. The second law indi-
cates the direction in which a process takes place. A process always occurs in such a direction as to cause
an increase in the entropy of the universe. The macroscopic change ceases only when the potential gradient
disappears and the equilibrium is reached when the entropy of the universe assumes a maximum value. To
determine the equilibrium state of an isolated system it is necessary to express the entropy as a function of
certain properties of the system and then render the function a maximum. At equilibrium, the system (iso-
lated) exists at the peak of the entropy-hill, and dS = 0 (Fig. 7.13).

The natural direction of events in which entropy increases indicates the ‘arrow of time’ which results
from the universe not being in thermodynamic equilibrium. It undergoes a natural evolution, and inexorably
approaches the state of quilibrium.

7.15 ! ENTROPY AND DISORDER

Work is a macroscopic concept. Work involves order or the orderly motion of molecules, as in the expan-
sion or compression of a gas. The kinetic energy and potential energy of a system represent orderly forms of
energy. The kinetic energy of a gas is due to the coordinated motion of all the molecules with the same aver-
age velocity in the same direction. The potential energy is due to the vantage position taken by the molecules
or displacements of molecules from their normal positions. Heat or thermal energy is due to the random
thermal motion of molecules in a completely disorderly fashion and the average velocity is zero. Orderly
energy can be readily converted into disorderly energy, e.g. mechanical and electrical energies into internal
energy (and then heat) by friction and Joule effect. Orderly energy can also be converted into one another. But
there are natural limitations on the conversion of disorderly energy into orderly energy, as delineated by the
second law. When work is dissipated into internal energy, the disorderly motion of molecules is increased.
Two gases, when mixed, represent a higher degree of disorder than when they are separated. An irreversible
process always tends to take the system (isolated) to a state of greater disorder. It is a tendency on the part of
nature to proceed to a state of greater disorder. An isolated system always tends to a state of greater entropy.
So there is a close link between entropy and disorder. It may be stated roughly that the entropy of a system
is a measure of the degree of molecular disorder existing in the system. When heat is imparted to a system,
the disorderly motion of molecules increases, and so the entropy of the system increases. The reverse occurs
when heat is removed from the system.

Ludwig Boltzmann (1877) introduced statistical concep's to define disorder by attaching to each state a
thermodynamic probability, expressed by the quantity W, which is greater the more disordered the state is.
The increase of entropy implies that the system proceeds bv itsclf from one state to another with a higher
thermodynamic probability (or disorder number). An irreversible process goes on until the most probable
state (equilibrium state when W is maximum) corresponding to the maximum value of entropy is reached.
Boltzmann assumed a functional relation between S and . While entropy is additive, probability is multipli-
cative. If the two parts 4 and B of a system in equilibrium are considered, the entropy is the sum

S=S,+85,
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and the thermodynamic probability is the product
W=W,- W,
Again, S=SW),S, =S(W,),and S; = S(Wp)
S(W) = S(W,Wy) = S(W,) + S(Wp)
which is a well-known functional equation for the logarithm. Thus the famous relation is reached
S=KhnW (7.48)

where KX is a constant, known as Boltzmann constant. This is engraved upon Boltzmann’s tombstone in Vienna.

When W = 1, which represents the greatest order, S = 0. This occurs only at T = 0 K. This state cannot be
reached in a finite number of operations. This is the Nernst-Simon statement of third law of thermodynamics.
In the case of a gas, /¥ increases due to an increase in volume ¥ or temperature 7. In the reversible adiabatic

expansion of a gas the increase in disorder due to an increase in volume is just compensated by the decrease
in disorder due to a decrease in temperature, so that the disorder number or entropy remains constant.

7.16 ABSOLUTE ENTROPY

It is important to note that one is interested only in the amount by which the entropy of the system changes in
going from an initial to final state, and not in the value of absolute entropy. In cases where it is necessary, a
zero value of entropy of the system at an arbitrarily chosen standard state is assigned, and the entropy changes
are calculated with reference to this standard state. ‘

| Example 7.1

Water flows through a turbine in which friction causes the water temperature 1o rise from 35°C to 37°C.
If there is no heat transfer, how much does the entropy of the water change in passing through the turbine?
(Water is incompressible and the process can be taken to be at constant volume.)

Solution The presence of friction makes the process irreversible and causes an entropy increase for the
system. The flow process is indicated by the dotted line joining the equilibrium states 1 and 2
(Fig. Ex. 7.1). Since entropy is a state
property and the entropy change de-
pends only on the two end states and
is independent of the path the system
follows, to find the entropy change, the
irreversible path has to be replaced by a
reversible path, as shown in the figure,
because no integration can be made on
a path other than a reversible path.

T,=37+273 =310K

Reversible path
connecting the initial
and final equilibrium

states

T, =35+ 273 = 308K

We have a9, ., =T1ds
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ds = medT
T
T,
S,~S, =me,In =2 =1x41871n 2290 = 0.0243 kIK Ans.
T, 308

Example 7.2

(a) One kg of water at 273 K is brought into contact with a heat reservoir at 373 K. When the water has
reached 373 K, find the entropy change of the water, of the heat reservoir, and of the universe.

(b) Ifwateris heated from273 K to 373 K by first bringing it in contact with a reservoir at 323 K and then
with a reservoir at 373 K, what will the entropy change of the universe be?

(c) Explain how water might be heated from 273 to 373 K with almost no change in the entropy of the
universe.

Solution (a) Water is being heated through a finite temperature differ-
ence (Fig. Ex. 7.2). The entropy of water would increase and that Reservoir
of the reservoir would decrease so that the net entropy change 373K
of the water (system) and the reservoir together would be posi-
tive definite. Water is being heated irreversibly, and to find the
entropy change of water, we have to assume a reversible path Q
between the end states which are at equilibrium.

T,
a9 jmch T,
A = = = mch =
( S)water f T T C Tl

—1x4187ln2—;§=1305k1/1( C Y

The reservoir temperature remains constant irrespective of the amount of heat withdrawn from 1t
Amount of heat absorbed by the system from the reservoir,
O=1x4.187 x (373-273) =418.7kJ
.". Entropy change of the reservoir

(AS),, = —-X = 22" =-1.12kJI/K

373

NI
o
o
S

.". Entropy change of the universe
(AS) iy = (A9 ey + (AS)
=1305-1.122 = 0.183 kJ/K Ans. (a)

(b) Water is being heated in two stages, first from 273 K to 323 K by bringing it in contact
with a reservoir at 323 K, and then from 323 K to 373 K by bringing it in contact of a second

reservoir at 373 K.

323K dr 373K dr

(AS)watcr= f mc— + ch
273K 323K
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~4187 (32 4 1n 373] =(0.1673 + 0.1441) 4.187
273 323
= 1.305 kJ/K
(AS),, = _1x4.187x(323-273) _ o chr ik
323
(AS),_, = 1x4.187x(373-323) _ 0 se11k
373
(As)univ = (As)watcr + (AS)resI + (As)res 1
= 1.305 - 0.647 - 0.56
= 0.098 kJ/K Ans.

(c) The entropy change of the universe would be less and less if the water is heated in more and
more stages, by bringing the water in contact successively with more and more heat reservoirs,
each succeeding reservoir being at a higher temperature than the preceding one.

When water is heated in infinite steps, by bringing it in contact with an infinite number of res-
ervoirs in succession, so that at any instant the temperature difference between the water and the
reservoir in contact is infinitesimally small, then the net entropy change of the universe would be
zero, and the water would be reversibly heated.

I Example 7.3

One kg of ice at — 5°C is exposed to the atmosphere which is at 20°C. The ice melts and comes into ther-
mal equilibrium with the atmosphere. (a) Determine the entropy increase of the universe. (b) What is the
minimum amount of work necessary to convert the water back into ice at — 5°C? c, of ice is 2.093 kJ/kg K
and the latent heat of fusion of ice is 333.3 kJ/kg.

Solution Heat absorbed by ice Q from the atmosphere (Fig. Ex. 7.3.1)

= Heat absorbed in solid phase + Latent heat
+ Heat absorbed in liquid phase

=1x2093 x[0-(-5)]+1x3333+1x4.187

Atmosphere
20°C

x (20-0)
=4275k]
Entropy change of the atmosphere.
427.5
As), =-2 =_ 2275 _ a6k

EDm == 7 293 A

Entropy change of the system (ice) as it gets heated from ~
-5°C to 0°C

293
dr 273
(AS)yuem = [ me, p g =1X2093In 22 =2093 x 00186

268

= 0.0389 kJ/K
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Entropy change of the system as ice melts at 0°C to become water at 0°C

(AS,

3333
ll)system = _53— =122k
Entropy change of water as it gets heated from 0°C to 20°C

293
— ar _ 293
(ASpgen = [ me, G- =1x 41871 22 0296 kK

273
Total entropy change of ice as it melts into water

(AS) g = AS, + AS; + ASy,
= 0.0389 + 1.22 + 0.296 = 1.5549 kI/K

total

The entropy-temperature diagram for the system as ice at — 5°C converts to water at 20°C is

shown in Fig. Ex. 7.3.2.
.. Entropy increase of the universe

(AS)umv = (AS)system + (As)atm
= 1.5549-1.46 = 0.0949 kJ/K Ans. (a)

(b) To convert 1 kg of water at 20°C to ice at — 5°C, 427.5 kJ of heat have to be removed from it,
and the system has to be brought from state 4 to state 1 (Fig. 7.3.2). A refrigerator cycle, as shown
in Fig. 7.3.3, is assumed to accomplish this.

298K 4 | ez |
278K . 2 Jum 3 W— @

1h s R83.7 kJ
S S

S| Sl S

T

1 kg water at 20°C

toice at — 5°C System

B ———

The entropy change of the system would be the same, i.e. S, —S,, with the only difference that
its sign will be negative, because heat is removed from the system (Fig. Ex. 7.3.2).
(AS) =8-S,
(negative)
The entropy change of the working fluid in the refrigerator would be zero, since it is operating
in a cycle, i.e.,

system

(AS)ref =0
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The entropy change of the atmosphere (positive)
(88) = L1
.". Entropy change of the universe
(AS)yi = (AS)g giem + (AS), ¢ + (AS)

=(5,-S)+ Q;W
By the principle of increase of entropy

(AS) >0

univ or isolated system =
Q+W
T

(8, —8,)+ 20

Q+W > (S,-5)
T

W>T(S,-S)-0
Wiy = TS, = 5) - ©
Here Q=4275kJ
T=293K
S, -8, = 15549 KJ/K
W iminy = 293 x 1.5549 - 427.5
=285KkJ Ans. (b)

Example 7.4

Two identical bodies of constant heat capacity are at the same initial temperature T.. A refrigerator oper-
ates between these two bodies until one body is cooled to temperature T, . If the bodies remain at constant
pressure and undergo no change of phase, show that the minimum amount of work needed to do this is

CP

(min)

T2
ST, 2T
Tz 2 |J

Solution Both the finite bodies 4 and B are initially at the same tempera-
ture 7;. Body 4 is to be cooled to temperature T, by operating
the refrigerator cycle, as shown in Fig. Ex. 7.4. Let T. ,” be the
final temperature of body B. w @

Heat removed from body 4 to cool it from TtoT,
0=CT,~T)
where Cp is the constant pressure heat capacity of the identical

bodies 4 and B.
Heat discharged to body B

=Q+W=C,(Iy-T)



